Monday, October 8, 2018

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 43

Given the equation $c(x) = 5000 + 10 x + 0.05 x^2$, where $c$ represents the cost of producing $x$ units of
a certain commodity.



a.) Determine the average rate of change of $c$ with respect to $x$ when the production level is changed.



$
\begin{equation}
\begin{aligned}
& (i) \text{ from } x = 100 \text{ to } x = 105\\
& (ii) \text{ from } x = 100 \text{ to } x = 101
\end{aligned}
\end{equation}
$



b.) Determine the instantaneous rate of change of $c$ with respect to $x$ when $x = 100$.



a.) $(i)$ from $x = 100$ to $x = 105$



$ \quad \displaystyle \text{average rate } = \frac{c(105) - c(100)}{105-100} =
\frac{5000+10(105) +0.05(105)^2 - [5000+10(100) + 0.05(100)^2]}{105-100} = \frac{\$ 20.25}{\text{ unit}}$



$(ii)$ from $x = 100 $ to $x = 101$


$ \quad \displaystyle \text{average rate } = \frac{c(101) - c(100)}{101-100} =
\frac{5000+10(101) +0.05(101)^2 - [5000+10(100) + 0.05(100)^2]}{101-100} = \frac{\$ 20.05}{\text{ unit}}$



b.) From the definition, we can write the instantaneous rate as,



$\displaystyle c(a) = \lim\limits_{h \to 0} \frac{f(a+h) - f(a)}{h}$



$
\begin{equation}
\begin{aligned}
c(a) & = \lim\limits_{h \to 0} \frac{5000+10(a+h)+0.05(a+h)^2-[5000+10(a)+0.05(a)^2]}{h}\\
c(a) & = \lim\limits_{h \to 0} \frac{\cancel{5000} + \cancel{10a} + 10h + \cancel{0.05a^2} + 0.1ah + 0.05h^2 - \cancel{5000} - \cancel{10a} - \cancel{0.05a^2}}{h}\\
c(a) & = \lim\limits_{h \to 0} \frac{\cancel{h}(10+0.1a+0.05h)}{\cancel{h}}\\
c(a) & = \lim\limits_{h \to 0} (10+0.1a+0.05h)\\
c(a) & = 10+0.1a+0.05(0)\\
c(a) & = 10+0.1a
\end{aligned}
\end{equation}
$



The value of instantaneous rate of change of $c$ when $a = 100$ is $\displaystyle c(100) = 10+0.1(100) = \frac{\$ 20}{\text{unit}}$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...