Wednesday, May 1, 2019

Single Variable Calculus, Chapter 5, 5.2, Section 5.2, Problem 46

Evaluate $\displaystyle \int^{\pi/2}_0 (2 \cos x - 5x) dx$ using the properties of integrals and the fact that $\displaystyle \int^{\pi/2}_0 \cos x dx = 1$ and $\displaystyle \int^a_b x dx = \frac{b^2 - a^2}{2}$

Applying the properties of integrals

$
\begin{equation}
\begin{aligned}
\int^a_b [f(x) - g(x)] dx &= \int^a_b f(x)dx - \int^a_b g(x) dx \\
\\
\int^{\pi/2}_0 ( 2 \cos x - 5x) dx &= \int^{\pi/2}_0 2 \cos x dx - \int^{\pi/2}_0 5x dx
\end{aligned}
\end{equation}
$


Then apply $\displaystyle \int^a_b c f(x) dx = c \int^a_b f(x) dx$, where $c$ is any constant then
$\displaystyle \int^{\pi/2}_0 2\cos x dx - \int^{\pi/2}_0 2 5 x dx = 2 \int^{\pi/2}_0 2 \cos x dx - 5 \int^{\pi/2}_0 2 x dx$
Since $\displaystyle \int^{\pi/2}_0 2 \cos x dx 1$ and $\displaystyle \int^b_a x dx = \frac{b^2 - a^2}{2}$, we have

$
\begin{equation}
\begin{aligned}
2 \int^{\pi/2}_0 2 \cos dx - 5 \int^{\pi/2}_0 2 x dx &= 2 (1) - 5 \left[ \frac{\left(\frac{\pi}{2} \right)^2 - (0)^2}{2} \right]\\
\\
2 \int^{\pi/2}_0 2 \cos dx - 5 \int^{\pi/2}_0 2 x dx &= 2 2 - 5 \left( \frac{\frac{\pi^2}{4}}{2}\right)\\
\\
2 \int^{\pi/2}_0 2 \cos dx - 5 \int^{\pi/2}_0 2 x dx &= 2 2 - \frac{5\pi^2}{8}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...