Saturday, November 30, 2019

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 38

Find all real solutions of the equation $\displaystyle \left( \frac{x}{x + 2} \right)^2 = \frac{4x}{x + 2} - 4$


$
\begin{equation}
\begin{aligned}

\left( \frac{x}{x + 2} \right)^2 =& \frac{4x}{x + 2} - 4
&& \text{Given}
\\
\\
\left( \frac{x}{x + 2} \right)^2 - \left( \frac{4x}{x + 2} \right) + 4 =& 0
&& \text{Subtract } \frac{4x}{x + 2} \text{ and add } 4
\\
\\
w^2 - 4w + 4 =& 0
&& \text{Let } w = \frac{x}{x + 2}
\\
\\
(w - 2)^2 =& 0
&& \text{Factor out}
\\
\\
w - 2 =& 0
&& \text{Take the square root}
\\
\\
w =& 2
&& \text{Add } 2
\\
\\
\frac{x}{x + 2} =& 2
&& \text{Substitute } w = \frac{x}{x + 2}
\\
\\
x =& 2x + 4
&& \text{Apply cross multiplication}
\\
\\
x =& -4
&& \text{Solve for } x


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...