Thursday, November 21, 2019

College Algebra, Chapter 2, 2.1, Section 2.1, Problem 44

Find the area of the triangle shown in the figure.




$A(-2,1)$
$B(4,1)$
$C(7,4)$

By using distance formula,

$
\begin{equation}
\begin{aligned}
d_{AB} &= \sqrt{(1-1)^2 + (4-(-2))^2}\\
\\
d_{AB} &= \sqrt{0^2 + (6)^2}\\
\\
d_{AB} &= \sqrt{0+36}\\
\\
d_{AB} &= 6 \text{ units}
\end{aligned}
\end{equation}
$

Then,

$
\begin{equation}
\begin{aligned}
d_{AC} &= \sqrt{(4-1)^2 + (7-(-2))^2}\\
\\
d_{AC} &= \sqrt{3^2 + (9)^2}\\
\\
d_{AC} &= \sqrt{9+81}\\
\\
d_{AC} &= \sqrt{90} \text{ units}
\end{aligned}
\end{equation}
$


Lastly,

$
\begin{equation}
\begin{aligned}
d_{BC} &= \sqrt{(4-1)^2 + (7-4)^2}\\
\\
d_{BC} &= \sqrt{3^2 + 3^2}\\
\\
d_{BC} &= \sqrt{9+9}\\
\\
d_{BC} &= \sqrt{18} \text{ units}
\end{aligned}
\end{equation}
$


Now, we can get the area of those triangle by using the Heron's Formula given the length of three sides. Recall that,
$A \sqrt{s(s-a)(s-b)(s-c)}$ where $\displaystyle s = \frac{a+b+c}{2}$
$\displaystyle s = \frac{d_{AB}+d_{AC}+d_{BC}}{2} = \frac{6+\sqrt{90}+\sqrt{18}}{2} = \frac{6+3\sqrt{10}+3\sqrt{2}}{2}$
$\displaystyle =\frac{3}{2} (2 + \sqrt{10}+ \sqrt{2})$ units
Now substitute $s, d_{AB}$ as $a$, $d_{AC}$ as $b$, and $d_{BC}$ as $c$ to the equation of $A$ an we get.
$ A = 9 $ square units

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...