Sunday, December 1, 2019

College Algebra, Chapter 8, 8.3, Section 8.3, Problem 42

Find an equation for the hyperbola with foci $(0,\pm 1)$ and length of the transverse axis of 1.
The hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has length of transverse axis of $2a$ and foci $(0,\pm c)$ where $c^2 = a^2 + b^2$.
Thus, gives us $2a = 1$ and $c = 1$. So, $\displaystyle a=\frac{1}{2}$. Then, by substituting the values, we obtain

$
\begin{equation}
\begin{aligned}
1^2 &= \left( \frac{1}{2} \right)^2 + b^2\\
\\
1 &= \frac{1}{4} + b^2 \\
\\
b^2 &= \frac{3}{4}\\
\\
b &= \frac{\sqrt{3}}{2}
\end{aligned}
\end{equation}
$


Therefore, the equation is

$
\begin{equation}
\begin{aligned}
\frac{y^2}{\left( \frac{1}{2} \right)^2} - \frac{x^2}{\left( \frac{\sqrt{3}}{2} \right)^2} &= 1\\
\\
\frac{y^2}{\frac{1}{4}} - \frac{x^2}{\frac{3}{4}} &= 1\\
\\
4y^2 - \frac{4x^2}{3} &= 1
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...