Saturday, July 21, 2012

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 7

int_0^adx/(a^2+x^2)^(3/2)
Let's first evaluate the indefinite integral by integral substitution,
Let x=atan(u)
dx=asec^2(u)du
intdx/(a^2+x^2)^(3/2)=int(asec^2(u)du)/(a^2+a^2tan^2(u))^(3/2)
=int(asec^2(u))/(a^2(1+tan^2(u)))^(3/2)du
=int(asec^2(u))/((a^2)^(3/2)(1+tan^2(u))^(3/2))du
Use the identity:1+tan^2(x)=sec^2(x)
=int(asec^2(u))/((a^3)(sec^2(u))^(3/2))du
=1/a^2int(sec^2(u))/(sec^3(u))du
=1/a^2int1/sec(u)du
=1/a^2intcos(u)du
=1/a^2(sin(u))
We have used x=atan(u)
tan(u)=x/a
Now let's find sin(u) for triangle with angle theta, opposite side as x and adjacent side as a and hypotenuse as h,
h^2=x^2+a^2
h=sqrt(x^2+a^2)
So, sin(u)=x/sqrt(x^2+a^2)
=1/a^2(x/sqrt(x^2+a^2))
Add a constant C to the solution.
=1/a^2(x/sqrt(x^2+a^2))+C
Now let's evaluate the definite integral,
int_0^a(dx)/(a^2+x^2)^(3/2)=[1/a^2(x/sqrt(x^2+a^2))]_0^a
=[1/a^2(a/sqrt(a^2+a^2))]-[1/a^2(0/sqrt(0^2+a^2))]
=[1/(asqrt(2a^2))]-[0]
=(1/(a^2sqrt(2)))
=1/(sqrt(2)a^2)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...