Sunday, July 22, 2012

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 17

inte^2thetasin(3theta)d theta
If f(x) and g(x) are differentiable functions, then
intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx
If we rewrite f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Let's integrate using the above method of integration by parts,
Let u=e^2theta, v=sin(3theta)
inte^(2theta)sin(3theta)d theta=e^(2theta)intsin(3theta)d theta-int(d/(d theta)(e^(2theta))intsin(3theta)d theta)d theta
=e^(2theta)(-1/3cos(3theta)-int(e^(2theta)2(-1/3cos(3theta))d theta
=-1/3e^(2theta)cos(3theta)+2/3inte^(2theta)cos(3theta)d theta
apply again integration by parts,
=-1/3e^(2theta)cos(3theta)+2/3(e^(2theta)*intcos(3theta)d theta-int(e^(2theta)*2intcos(3theta) d theta)
=-1/3e^(2theta)cos(3theta)+2/3(e^(2theta)1/3sin(3theta)-int2e^(2theta)(sin(3theta)/3)d theta)
=-1/3e^(2theta)cos(3theta)+2/9e^(2theta)sin(3theta)-4/9inte^(2theta)sin(3theta)d theta
Isolate inte^(2theta)sin(3theta)d theta
(1+4/9)inte^(2theta)sin(3theta)d theta=-1/3e^(2theta)cos(3theta)+2/9e^(2theta)sin(3theta)
inte^(2theta)sin(3theta)d theta=9/13(-1/3e^(2theta)cos(3theta)+2/9e^(2theta)sin(3theta))
=-3/13e^(2theta)cos(3theta)+2/13e^(2theta)sin(3theta)
add a constant C to the solution,
=-3/13e^(2theta)cos(3theta)+2/13e^(2theta)sin(3theta)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...