Saturday, July 28, 2012

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 40

Determine the critical numbers of the function $g(x) = x^{\frac{1}{3}} - x^{- \frac{2}{3}}$


$
\begin{equation}
\begin{aligned}

g'(x) =& \frac{d}{dx} (x^{\frac{1}{3}}) - \frac{d}{dx} (x^{- \frac{2}{3}})
\\
\\
g'(x) =& \frac{1}{3} (x)^{- \frac{2}{3}} - \left( \frac{-2}{3} \right) (x)^{- \frac{5}{3}}
\\
\\
g'(x) =& \frac{1}{3(x)^{\frac{2}{3}}} + \frac{2}{3(x)^{\frac{5}{3}}}
\\
\\
g'(x) =& \left[ \frac{1}{3(x)^{\frac{2}{3}}} \cdot \frac{x}{x} \right] + \frac{2}{3(x)^{\frac{5}{3}}}
\\
\\
g'(x) =& \frac{x}{3(x)^{\frac{5}{3}}} + \frac{2}{3 (x)^{\frac{5}{3}}}
\\
\\
g'(x) =& \frac{x + 2}{3 (x)^{\frac{5}{3}}}

\end{aligned}
\end{equation}
$


Solving for critical number


$
\begin{equation}
\begin{aligned}

& g'(x) = 0
\\
\\
& 0 = \frac{x + 2}{3(x)^{\frac{5}{3}}}
\\
\\
& 3(x)^{\frac{5}{3}} \left[ 0 = \frac{x + 2}{\cancel{3 (x)^{\frac{5}{3}}}} \right] \cancel{3 (x)^{\frac{5}{3}}}
\\
\\
& 0 = x+ 2
\\
\\
& 0 - 2 = x + 2 - 2
\\
\\
& -2 = x
\\
\\
& \text{ or }
\\
\\
& x = -2

\end{aligned}
\end{equation}
$


Therefore, the critical number is $x = -2$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...