Monday, July 23, 2012

Single Variable Calculus, Chapter 7, Review Exercises, Section Review Exercises, Problem 78

Evaluate $\displaystyle \lim_{x \to (\pi/2)^-} (\tan x)^{\cos x}$



$
\begin{equation}
\begin{aligned}

\text{If we let } y =& (\tan x)^{\cos x}, \text{ then}
\\
\\
\ln y =& \cos x \ln (\tan x)
\\
\\
\text{So, } &
\\
\\
\lim_{x \to (\pi/2)^-} \ln y =& \lim_{x \to (\pi/2)^-} \cos x \ln (\tan x)
\\
\\
=& \lim_{x \to (\pi/2)^-} \cos x \cdot \lim_{x \to (\pi/2)^-} \ln (\tan x)
\\
\\
=& \cos \frac{\pi}{2} \cdot \lim_{x \to (\pi/2)^-} \ln (\tan x)

\end{aligned}
\end{equation}
$


By applying L' Hospitals Rule


$
\begin{equation}
\begin{aligned}

=& 0 \cdot \lim_{x \to (\pi/2)^-} \frac{\sec^2 x}{\tan x}
\\
\\
=& 0 \cdot \lim_{x \to (\pi/2)^-} \frac{\displaystyle \frac{1}{\cos^2 x}}{\displaystyle \frac{\sin x}{\cos x}}
\\
\\
=& 0 \cdot \lim_{x \to (\pi/2)^-} \frac{1}{\sin x \cos x}

\end{aligned}
\end{equation}
$


If we evaluate the limit, we will still get an indeterminate form, so we must apply the L' Hospitals Rule once more..


$
\begin{equation}
\begin{aligned}

=& 0 \cdot \lim_{x \to (\pi/2)^-} 0
\\
\\
=& 0

\end{aligned}
\end{equation}
$


Thus,


$
\begin{equation}
\begin{aligned}

\lim_{x \to (\pi/2)^-} \ln y =& \lim_{x \to (\pi/2)^-} \cos x \ln = 0

\end{aligned}
\end{equation}
$


Therefore, we have..


$
\begin{equation}
\begin{aligned}

\lim_{x \to (\pi/2)^-} (\tan x)^{\cos x} =& \lim_{x \to (\pi/2)^-} e^{\ln y}
\\
\\
=& e^0
\\
\\
=& 1

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...