Saturday, July 28, 2012

Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 64

Determine the absolute maximum and absolute minimum values of $\displaystyle f(x) = x^2 e^{\frac{-x}{2}}$ on the interval $[-1,6]$

To determine the critical numbers, we set $f'(x) = 0$, so..


$
\begin{equation}
\begin{aligned}

\text{if } f(x) =& x^2 e^{\frac{-x}{2}} \text{ then by using Product Rule..}
\\
\\
f'(x) =& \left[ x^2 e^{\frac{-x}{2}} \left( \frac{-1}{2} \right) + 2x e^{\frac{-x}{2}} \right]
\\
\\
f'(x) =& xe^{\frac{-x}{2}} \left( 2 - \frac{x}{2} \right)

\end{aligned}
\end{equation}
$


When $f'(x) = 0$, then..

$\displaystyle 0 = x e^{\frac{-x}{2}} \left( 2 - \frac{x}{2} \right)$

We have,

$xe^{\frac{-x}{2}} = 0 $ and $ \displaystyle 2 - \frac{x}{2} = 0$

The real solution and the critical number is..


$
\begin{equation}
\begin{aligned}

2 - \frac{x}{2} =& 0
\\
\\
\frac{x}{2} =& 2
\\
\\
x =& 4

\end{aligned}
\end{equation}
$



So we have either a maximum or a minimum at $x = 4$, if we evaluate $f(x)$ with $x = 4$, the intervals $x = \pm 1$ and $x = 6$ and $x = 0$,

$
\begin{array}{ccc}
\text{when } x = 4, & & \text{when }x = -1, \\
f(4) = 4^2 (e^{\frac{-4}{2}}) & & f(-1) = (-1)^2 (e^{\frac{-4(-1)}{2}} ) \\
f(4) = 2.1654 & & f(-1) = 1.6487 \\
\text{when } x = 6,& & \text{when } x = 0,\\
f(6) = 6^2 (e^{\frac{-6}{2}}) & & f(0) = (0)^2 (e^{\frac{-0}{2}}) \\
f(6) = 1.7923 & & f(0) = 0
\end{array}
$

Therefore, the absolute maximum is $f(4) = 2.1654$ and the absolute minimum is $f(0) = 0$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...