Monday, July 23, 2012

Single Variable Calculus, Chapter 1, 1.1, Section 1.1, Problem 50

The graph of the given curve is shown below. Find an expression for its function.




Referring to the graph we can find the equation of the line at left side using point slope form.


$
\begin{equation}
\begin{aligned}
y - 3 &= \frac{0 - 3}{-2+4}(x + 4)\\
\\
y - 3 &= \frac{-3}{2}(x + 4) && (\text{Simplifying equation})\\
\\
2y - 6 &= -3x - 12 && (\text{Solving for }y )\\
\\
y &= \frac{-3}{2}x - 3 \text{ for } -4 \leq x \leq -2\\
\end{aligned}
\end{equation}
$


The next graph is an equation of a semicircle with radius 2.


$
\begin{equation}
\begin{aligned}
y &= \sqrt{4 - x^2} \text{ for } -2 < x < 2\\
\end{aligned}
\end{equation}
$


Again, using point slope form, we can find the equation of the line at the right side.


$
\begin{equation}
\begin{aligned}
y - 0 &= \frac{3-0}{4-2}(x - 2) && (\text{Simplifying equation})\\
\\
y - 0 &= \frac{3}{2} (x -2) && (\text{Solving for }y )\\
\\
y &= \frac{3}{2}x - 3 \text{ for } 2 \leq x \leq 4\\
\end{aligned}
\end{equation}
$



Then, the expression for this function is...
$\boxed{\begin{array}{cccc}
& \frac{-3}{2}x -3& \text{ for } & -4 \leq x \leq -2 \\
&&&\\
f(x) =& \sqrt{4 - x^2} & \text{ for } & -2 < x < 2 \\
&&&\\
& \frac{3}{2}x - 3 & \text{ for } & 2 \leq x \leq 4
\end{array}}$

No comments:

Post a Comment

Summarize the major research findings of &quot;Toward an experimental ecology of human development.&quot;

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...