Saturday, September 1, 2012

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 18

intcot^5(theta)sin^4(theta)dTheta=
int[(cos^5(theta))/(sin^5(theta))]sint^4(theta)dTheta=
int[(cos^5(theta))/(sin^(theta))]d(Theta)=
intcos^4(theta)[cos(theta)/sin(theta)]d(Theta)=
int(cos^2(theta))^2[cos(theta)/sin(theta)]d(Theta)=
int(1-sin^2(theta))^2[cos(theta)/sin(theta)]d(Theta)=
Integrate using u-subsitution.
Let
u=sin(theta)
(du)/[d(theta)]=cos(theta)
d(theta)=(du)/[cos(theta)]

int(1-u^2)^2[cos(theta)/u][(du)/(cos(theta))]=
int[1-2u^2+u^4]/udu=
int[(1/u)-2u+u^3]du=
ln|u|-(2u^2)/2+u^4/4+C=
ln|u|-u^2+1/4u^4+C=
ln|sin(theta)|-sin^2(theta)+1/4sin^4(theta)+C

The final answer is: ln|sin(theta)|-sin^2(theta)+1/4sin^4(theta)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...