Sunday, June 2, 2013

College Algebra, Chapter 1, 1.5, Section 1.5, Problem 24

Find all real solutions of the equation $\displaystyle \frac{x}{2x + 7} - \frac{x + 1}{x + 3} = 1$


$
\begin{equation}
\begin{aligned}

\frac{x}{2x + 7} - \frac{x + 1}{x + 3} =& 1
&& \text{Given}
\\
\\
x(x + 3) - (x + 1)(2x + 7) =& (2x + 7)(x + 3)
&& \text{Multiply the LCD } (2x + 7)(x + 3)
\\
\\
x^2 + 3x - 2x^2 - 7x - x - 7 =& 2x^2 + 6x + 7x + 21
&& \text{Expand using FOIL method and Distributive Property}
\\
\\
3x^2 + 18x + 30 =& 0
&& \text{Combine like terms}
\\
\\
x^2 + 6x + 10 =& 0
&& \text{Divide both sides by } 3
\\
\\
x^2 + 6x =& -10
&& \text{Subtract } 10
\\
\\
x^2 + 6x + 9 =& -10 + 9
&& \text{Complete the square: add } \left( \frac{6}{2} \right)^2 = 9
\\
\\
(x + 3)^2 =& -1
&& \text{Perfect Square}
\\
\\
x + 3 =& \pm \sqrt{-1}
&& \text{Take the square root}
\\
\\
x =& -3 \pm \sqrt{-1}
&& \text{Subtract } 3
\\
\\
x =& -3 \pm \sqrt{i^2}
&& \text{Recall that } i^2 = -1
\\
\\
x =& -3 \pm i

\end{aligned}
\end{equation}
$



There are no real solutions.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...