Sunday, June 16, 2013

int (x^3+x+1)/(x^4+2x^2+1) dx Find the indefinite integral

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
          F(x) as the anti-derivative function of f(x)
          C  as the arbitrary constant known as constant of integration
 
To determine the indefinite integral of int (x^3+x+1)/(x^4+2x^2+1) dx , we apply partial fraction decomposition to expand the integrand: f(x)=(x^3+x+1)/(x^4+2x^2+1) .
The pattern on setting up partial fractions will depend on the factors  of the denominator. For the given problem,  the denominator is in a similar form of perfect squares trinomial:  x^2+2xy+y^2= (x+y)^2
Applying the special factoring on (x^4+2x^2+1) , we get: (x^4+2x+1)= (x^2+1)^2 .
For the repeated quadratic factor (x^2+1)^2 , we will have partial fraction: (Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2 .
The integrand becomes:
(x^3+x+1)/(x^4+2x^2+1)=(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2
Multiply both sides by the LCD =(x^2+1)^2 :
((x^3+x+1)/(x^4+2x^2+1)) *(x^2+1)^2=((Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2)*(x^2+1)^2
x^3+x+1=(Ax+B)(x^2+1) +Cx+D
x^3+x+1=Ax^3 +Ax+Bx^2+B+Cx+D
x^3+0x^2 + x+1=Ax^3 +Ax+Bx^2+B+Cx+D
Equate the coefficients of similar terms on both sides to list a system of equations:
Terms with x^3 :  1 = A
Terms with x^2 :  0=B
Terms with x :  1 = A+C
Plug-in A =1 on 1 =A+C , we get: 
1 =1+C
C =1-1
C =0
Constant terms: 1=B+D
Plug-in B =0 on 1 =B+D , we get: 
1 =0+D
D =1
Plug-in the values of A =1 , B=0 , C=0 , and D=1 , we get the partial fraction decomposition:
(x^3+x+1)/(x^4+2x^2+1)=(1x+0)/(x^2+1) +(0x+1)/(x^2+1)^2
                      =x/(x^2+1) +1/(x^2+1)^2
Then the integral becomes:
int (x^3+x+1)/(x^4+2x^2+1) dx = int [x/(x^2+1) +1/(x^2+1)^2] dx
Apply the basic integration property: int (u+v) dx = int (u) dx +int (v) dx.
int [x/(x^2+1) +1/(x^2+1)^2] dx=int x/(x^2+1)dx +int 1/(x^2+1)^2 dx
For the first integral, we apply integration formula for rational function as:
int u /(u^2+a^2) du = 1/2ln|u^2+a^2|+C
Then, int x/(x^2+1)dx=1/2ln|x^2+1|+C or (ln|x^2+1|)/2+C
For the second integral,  we apply integration by trigonometric substitution.
We let x = tan(u)  then  dx= sec^2(u) du
Plug-in  the values, we get:
int 1/(x^2+1)^2 dx = int 1 /(tan^2(u)+1)^2 * sec^2(u) du
Apply the trigonometric identity: tan^2(u) +1 = sec^2(u) and trigonometric property: 1/(sec^2(u)) =cos^2(u)
 int 1 /(tan^2(u)+1)^2 * sec^(u) du =int 1 /(sec^2(u))^2 * sec^2(u) du
                                        = int 1 /(sec^4(u)) * sec^2(u) du
                                       =int 1/(sec^2(u)) du
                                       = int cos^2(u) du
Apply the integration formula for cosine function: int cos(x) dx = 1/2[x+sin(x)cos(x)]+C
int cos^2(u) du= 1/2[u+sin(u)cos(u)]+C
Based from x= tan(u) then :
u =arctan(x)
sin(u) = x/sqrt(x^2+1)
cos(u) =1/sqrt(x^2+1)
Then the integral becomes:
int 1/(x^2+1)^2dx
= 1/2[arctan(x) + (x/sqrt(x^2+1))*(1/sqrt(x^2+1))]             
=arctan(x)/2+x/(2x^2+2)
Combining the results, we get: 
int (x^3+x+1)/(x^4+2x^2+1) dx =(ln|x^2+1|)/2+arctan(x)/2+x/(2x^2+2)+C 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...