Saturday, June 15, 2013

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 43

Determine the limit $\lim\limits_{x \rightarrow 0^-} \displaystyle \left(\frac{1}{x} - \frac{1}{|x|}\right)$, if it exists. If the limit does not exist, explain why.


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 0^-} \displaystyle \left(\frac{1}{x} - \frac{1}{|x|}\right) & = \lim\limits_{x \rightarrow 0^-} \left( \frac{1}{x}-\frac{1}{-x}\right)
&& \text{(Theorem of limit of approve values)}\\
\lim\limits_{x \rightarrow 0^-} \displaystyle \left(\frac{1}{x} + \frac{1}{x}\right) & = \lim\limits_{x \rightarrow 0^-} \frac{2}{x} = \frac{2}{0}\\
\end{aligned}
\end{equation}\\
\lim\limits_{x \rightarrow 0^-} \displaystyle \left( \frac{2}{x} \right) \qquad \text{(Does not exist because the denominator will be zero)}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...