Saturday, June 15, 2013

sum_(n=1)^oo 3^(-n) Confirm that the Integral Test can be applied to the series. Then use the Integral Test to determine the convergence or divergence of the series.

Integral test is applicable if f is positive and decreasing function on interval [k,oo) where a_n = f(x) .
If the integral int_k^oo f(x) dx is convergent then the series sum_(n=k)^oo a_n is also convergent.
If the integral int_k^oo f(x) dx is divergent then the series sum_(n=k)^oo a_n is also divergent.
For the  series sum_(n=1)^oo 3^(-n) , we have a_n=3^(-n) then we may let the function: 
f(x) = 3^(-x) which has the below graph:

As shown on the graph, f(x) is positive and decreasing on the interval [1,oo) . This confirms that we may apply the Integral test to determine the convergence or divergence of a series as:
int_1^oo 3^(-x) dx =lim_(t-gtoo)int_1^t 3^(-x)dx
To determine the indefinite integral of  int_1^t 3^(-x)dx , we may apply u-substitution by letting: u =-x then du = -dx or -1du =dx .
The integral becomes:
int 3^(-x) dx =int 3^u * -1 du
                  = - int 3^u du
Apply the integration formula for an exponential function: int a^u du = a^u/ln(a) +C where a  is  a constant.
- int 3^u du =- 3^u/ln(2)
Plugging-in u =-x on - 3^u/ln(3) , we get: 
int_1^t 3^(-x)dx= -3^(-x)/ln(3)|_1^t
                  = - 1/(3^xln(3))|_1^t
Applying the definite integral formula: F(x)|_a^b = F(b)-F(a) .
- 1/(3^xln(3))|_1^t= [- 1/(3^tln(3))] - [- 1/(3^1ln(3))]
                  =- 1/(3^tln(3)) + 1/(3ln(3))
                  =- 1/(3^tln(3)) + 1/ln(27)
Note: 3 ln(3)= ln(3^3) = ln(27)
Apply int_1^t 3^(-x) dx=- 1/(3^tln(3)) + 1/ln(27) , we get:
lim_(t-gtoo)int_1^t 3^(-x) dx=lim_(t-gtoo)[- 1/(3^tln(3)) + 1/ln(27)]
                            =lim_(t-gtoo)- 1/(3^tln(3)) +lim_(t-gtoo) 1/ln(27)
                            = 0 +1/ln(27)
                            =1/ln(27)
Note: 3^ooln(3) =oo then 1/oo =0 .
The lim_(t-gtoo)int_1^t 3^(-x)dx=1/ln(27) implies the integral converges.
Conclusion:
The integral int_1^oo 3^(-x)dx is convergent therefore the series sum_(n=1)^oo 3^(-n) must also be convergent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...