Friday, July 19, 2013

10^(3x-8)=2^(5-x) Solve the equation.

To solve the equation: 10^(3x-8)=2^(5-x) , we may take "ln" on both sides.
ln(10^(3x-8))=ln(2^(5-x))
Apply natural logarithm property: ln(x^n) = n*ln(x) .
(3x-8)ln(10)=(5-x)ln(2)
Let 10=2*5 .
(3x-8)ln(2*5)=(5-x)ln(2)
Apply natural logarithm property: ln(x*y) = ln(x)+ln(y) .
(3x-8)(ln(2) +ln(5))=(5-x)ln(2)
Distribute to expand each side.
3xln(2) +3xln(5)-8ln(2) -8ln(5)=5ln(2)-xln(2)
Isolate all terms with x's on one side.
3xln(2) +3xln(5)-8ln(2) -8ln(5) =5ln(2)-xln(2)
                                  +8ln(2) +8ln(5)     +8ln(2)         +8ln(5)  
------------------------------------------------------------------------------------------
3xln(2)+3xln(5)+0 +0 =13ln(2)-xln(2) +8ln(5)
 
3xln(2)+3xln(5) =13ln(2)-xln(2) +8ln(5)
+xln(2)                       +xln(2)
--------------------------------------------------------------------------
4xln(2) +3xln(5) =13ln(2)-0+8ln(5)
4xln(2) +3xln(5) =13ln(2)+8ln(5)
Factor out common factor x on the left side.
 
x(4ln(2) +3ln(5)) =13ln(2)+8ln(5)
Divide both sides by (4ln(2) +3ln(5)) .
(x(4ln(2) +3ln(5)))/(4ln(2) +3ln(5)) =(13ln(2)+8ln(5))/(4ln(2) +3ln(5))
x=(13ln(2)+8ln(5))/(4ln(2) +3ln(5))
Apply natural logarithm property: n*ln(x)=ln(x^n)
x=(ln(2^(13))+ln(5^8))/(ln(2^4) +ln(5^3))
x=(ln(8192)+ln(390625))/(ln(16) +ln(125))
Apply natural logarithm property: ln(x)+ln(y)=ln(x*y) .
x=(ln(8192*390625))/(ln(16*125))
x=(ln(3200000000))/(ln(2000))
or
x~~2.879

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...