Friday, July 26, 2013

Calculus of a Single Variable, Chapter 9, 9.9, Section 9.9, Problem 11

A power series centered at c=0 is follows the formula:
sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...
The given function f(x)= 3/(3x+4) resembles the power series:
(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n
or
(1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...
For better comparison, we let 3x+4 = 4 ((3x)/4 + 1) . The function becomes:
f(x)= 3/4 ((3x)/4 + 1)
Apply Law of exponents: 1/x^n = x^(-n) .
f(x)= 3/4((3x)/4 + 1)^(-1)

Apply the aforementioned formula for power series on ((3x)/4 + 1)^(-1) , we may replace "x" with "(3x)/4 " and "k " with "-1 ". We let:
(1+(3x)/4)^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) ((3x)/4) ^n
=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)((3x)/4) ^n
=1+(-1)((3x)/4) +(-1(-2))/(2!)((3x)/4)^2+(-1(-2)(-3))/(3!)((3x)/4)^3+(-1(-2)(-3)(-4)/(4!)((3x)/4)^4+...
=1-(3x)/4 +(2)/2((3x)/4)^2- 6/6((3x)/4)^3+24/24((3x)/4)^4+...
=1-(3x)/4 +((3x)/4)^2- ((3x)/4)^3+((3x)/4)^4+...
=1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...
Applying (1+(3x)/4)^(-1) =1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+... we get:
3/4((3x)/4 + 1)^(-1)= 3/4*[1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...]
=3/4-(9x)/16 +(27x^2)/64- (81x^3)/256+(243x^4)/1024+...
= sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n
The power series of the function f(x)=3/(3x+4) centered at c=0 is:
3/(3x+4)=sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n
or
3/(3x+4)=3/4-(9x)/16 +(279x^2)/64- (81x^3)/256+(243x^4)/1024+...
To determine the interval of convergence, we may apply geometric series test wherein the series sum_(n=0)^oo a*r^n is convergent if |r|lt1 or -1 ltrlt 1 . If |r|gt=1 then the geometric series diverges.
Applying (3/4)^(n+1) = (3/4)^n * (3/4) on the series sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n , we get:
sum_(n=0)^oo (-1)^n(3/4)^n(3/4)x^n =sum_(n=0)^oo(3/4) (-(3x)/4)^n
By comparing sum_(n=0)^oo(3/4) (-(3x)/4)^n with sum_(n=0)^oo a*r^n , we determine:r =-(3x)/4 .
Apply the condition for convergence of geometric series: |r|lt1 .
|-(3x)/4|lt1
|-1| *|(3x)/4|lt1
1 *|(3x)/4|lt1
|(3x)/4|lt1
-1lt(3x)/4lt1
Multiply each sides by 4/3 :
-1*4/3lt(3x)/4*4/3lt1*4/3
-4/3 ltxlt4/3
Check the convergence at endpoints that may satisfy |(3x)/4|=1 .
Let x=-4/3 on sum_(n=0)^oo(3/4) (-(3x)/4)^n , we get:
sum_(n=0)^oo(3/4) (-3/4*-4/3)^n=sum_(n=0)^oo(1)^n
Using geometric series test, the r =1 satisfy |r| gt=1 . Thus, the series diverges at x=-4/3 .
Let x=4/3 on sum_(n=0)^oo(3/4) (-(3x)/4)^n , we get:
sum_(n=0)^oo(3/4) (-3/4*4/3)^n=sum_(n=0)^oo(-1)^n
Using geometric series test, the r =-1 satisfy |r| gt=1 . Thus, the series diverges at x=-4/3 .
Thus, the power series sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n has an interval of convergence: -4/3 ltxlt4/3 .

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...