Monday, July 29, 2013

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 10

You need to use the fundamental trigonometric formula sin^2 x = 1 - cos^2 x:
int sin^2 t*cos^4 t dt = int (1 - cos^2 t)*cos^4 t dt
int (1 - cos^2 t)*cos^4 t dt = int cos^4 t dt - int cos^6 t dt
You should use the following formula:
cos^2 t = (1 + cos 2t)/2 => cos^4 t = ((1 + cos 2t)^2)/4
cos^6 t = ((1 + cos 2t)^3)/8
int cos^4 t dt= (1/4) int ((1 + cos 2t)^2) dt

int cos^4 t dt= (1/4) int dt + (1/4) int 2cos 2t dt + (1/4) cos^2 2t dt

int cos^4 t dt= (1/4) t + (1/4) sin 2t + (1/4)int (1 + cos 4t)/2dt
int cos^4 t dt= (1/4) t + (1/4) sin 2t + (1/8)( t + (sin 4t)/4) + c
You need to solve int cos^6 t dt such that:
int cos^6 t dt = int ((1 + cos 2t)^3)/8 dt
int cos^6 t dt = (1/8)int dt + (1/8) int cos^3 2t dt + (3/8) int cos^2 2t dt +(3/8) int cos 2t dt
(1/8) int cos^3 2t dt = (1/8) int cos^2 2t *cos 2t dt
int cos^2 2t *cos 2t dt = int (1 - sin^2 2t) *cos 2t dt
sin 2t = u => 2cos 2t dt = du
int (1 - sin^2 2t) *cos 2t dt = int (1 - u^2) *(du)/2
int (1 - u^2) *(du)/2 = u/2 - u^3/6
int (1 - sin^2 2t) *cos 2t dt = (sin 2t)/2 - (sin^3 2t)/6
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) int cos^2 2t dt
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) int (1 + cos 4t)/2 dt
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) (t + (sin 4t)/4)
Hence, the result of integration is:
int sin^2 t*cos^4 t dt = (1/4)pi + (1/4) sin 2pi + (1/8)(pi + (sin 8pi)/4)- (1/8)(pi - (1/8)((sin 2pi)/2 - (sin^3 4pi)/6)- (3/16) sin4pi- (3/8) (pi/2 + (sin 8pi)/4)
int sin^2 t*cos^4 t dt = int sin^2 t*cos^4 t dt = pi/4 - (3pi)/16 = pi/16

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...