You need to use the fundamental trigonometric formula sin^2 x = 1 - cos^2 x:
int sin^2 t*cos^4 t dt = int (1 - cos^2 t)*cos^4 t dt
int (1 - cos^2 t)*cos^4 t dt = int cos^4 t dt - int cos^6 t dt
You should use the following formula:
cos^2 t = (1 + cos 2t)/2 => cos^4 t = ((1 + cos 2t)^2)/4
cos^6 t = ((1 + cos 2t)^3)/8
int cos^4 t dt= (1/4) int ((1 + cos 2t)^2) dt
int cos^4 t dt= (1/4) int dt + (1/4) int 2cos 2t dt + (1/4) cos^2 2t dt
int cos^4 t dt= (1/4) t + (1/4) sin 2t + (1/4)int (1 + cos 4t)/2dt
int cos^4 t dt= (1/4) t + (1/4) sin 2t + (1/8)( t + (sin 4t)/4) + c
You need to solve int cos^6 t dt such that:
int cos^6 t dt = int ((1 + cos 2t)^3)/8 dt
int cos^6 t dt = (1/8)int dt + (1/8) int cos^3 2t dt + (3/8) int cos^2 2t dt +(3/8) int cos 2t dt
(1/8) int cos^3 2t dt = (1/8) int cos^2 2t *cos 2t dt
int cos^2 2t *cos 2t dt = int (1 - sin^2 2t) *cos 2t dt
sin 2t = u => 2cos 2t dt = du
int (1 - sin^2 2t) *cos 2t dt = int (1 - u^2) *(du)/2
int (1 - u^2) *(du)/2 = u/2 - u^3/6
int (1 - sin^2 2t) *cos 2t dt = (sin 2t)/2 - (sin^3 2t)/6
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) int cos^2 2t dt
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) int (1 + cos 4t)/2 dt
int cos^6 t dt = (1/8)t + (1/8)((sin 2t)/2 - (sin^3 2t)/6) + (3/16) sin 2t + (3/8) (t + (sin 4t)/4)
Hence, the result of integration is:
int sin^2 t*cos^4 t dt = (1/4)pi + (1/4) sin 2pi + (1/8)(pi + (sin 8pi)/4)- (1/8)(pi - (1/8)((sin 2pi)/2 - (sin^3 4pi)/6)- (3/16) sin4pi- (3/8) (pi/2 + (sin 8pi)/4)
int sin^2 t*cos^4 t dt = int sin^2 t*cos^4 t dt = pi/4 - (3pi)/16 = pi/16
Monday, July 29, 2013
Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 10
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment