Friday, July 26, 2013

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 50

Determine $\displaystyle \frac{dy}{du}, \frac{du}{dx}$ and $\displaystyle \frac{dy}{dx}$ if $\displaystyle y = (u+1)(u-1)$ and $u = x^3 + 1$.

We first find $\displaystyle \frac{dy}{du}$ and $\displaystyle \frac{du}{dx}$.



$
\begin{equation}
\begin{aligned}

\frac{dy}{du} =& (u + 1) \cdot \frac{d}{du} (u-1) + (u-1) \cdot \frac{d}{du} (u + 1) \qquad \text{ and } &&& \frac{du}{dx} =& \frac
{d}{dx} (x^3) + \frac{d}{dx} (1)
\\
\\
=& (u+1)(1) + (u-1)(1) &&& =& 3x^2
\\
\\
=& u + 1 + u - 1
\\
\\
=& 2u

\end{aligned}
\end{equation}
$


Then,


$
\begin{equation}
\begin{aligned}

\frac{dy}{dx} =& \frac{dy}{du} \cdot \frac{du}{dx}
\\
\\
=& 2u \cdot 3x^2
\\
\\
=& 6ux^2
\\
\\
=& 6x^2 (x^3 + 1)
\qquad \text{Substitute $x^3 + 1$ for $u$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...