Tuesday, July 16, 2013

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 71

Find the points that has a curve $y = 2x^3+3x^2-12x+1$ where the tangent is horizontal.
Given: $y = 2x^3 + 3x^2 - 12x + 1$
$y'=m_T = 0$ slope is 0 when tangent is horizontal.


$
\begin{equation}
\begin{aligned}
y &= 2x^3 + 3x^2 - 12x +1\\
\\
y'&= m_T = 2 \frac{d}{dx}(x^3) + 3 \frac{d}{dx}(x^2) - 12 \frac{d}{dx}(x) + \frac{d}{dx} (1)
&& \text{Derive each term}\\
\\
y'&= (2)(3x^2)+(3)(2x)-(12)(1)+0
&& \text{Simplify the equation}\\
\\
m_T &= 6x^2 + 6x - 12
&& \text{Substitute the value of slope } (m_T) \text{ which is 0}\\
\\
0 &= 6x^2+6x-12
&& \text{Get the factor of the equation.}\\
\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}
\text{Equation 1:}& &&& \text{Equation 2:}&\\
(6x & -7)
&&& (x & +2) &&& \text{Equate both Equation to 0}\\
6x-6 &= 0
&&& x+2 &= 0\\
\frac{\cancel{6}x}{\cancel{6}} &= \frac{\cancel{6}}{\cancel{6}}
&&& x &= -2 \\
x &= 1
\end{aligned}
\end{equation}
$


In Equation 1, add 6 to each sides and in Equation 2, add -2 to each sides.

@ $ x = 1$

$
\begin{equation}
\begin{aligned}
y &= 2x^3 + 3x^2 - 12x + 1 && \text{Substitute the computed values of }x \text{ on the curve } y = 2x^3 + 3x^2 - 12x +1\\
\\
y &= 2(1)^3 + 3(1)^2 - 12 (1) + 1\\
\\
y &= 2 + 3 - 12 + 1\\
\\
y &= -6
\end{aligned}
\end{equation}
$


@ $ x= -2$

$
\begin{equation}
\begin{aligned}
y &= 2 (-2)^3 + 3(-2)^{-2} - 12 (-2) + 1\\
\\
y &= -16+12+24+1\\
\\
y &= 21
\end{aligned}
\end{equation}
$


The points on the curve $y = 2x^3 + 3x^2 - 12x + 1$ are $(1,-6), (-2,21)$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...