Wednesday, July 17, 2013

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 22

Solve the system of equations $
\begin{equation}
\begin{aligned}

2x + 3y - 4z =& 4 \\
x - 6y + z =& -16 \\
-x + 3z =& 8

\end{aligned}
\end{equation}
$.


$
\begin{equation}
\begin{aligned}

4x + 6y - 8z =& 8
&& 2 \times \text{Equation 1}
\\
x - 6y + z =& -16
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x \phantom{-6y} -7z =& -8
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x - 7z =& -8
&& \text{Equation 4}
\\
-x + 3z =& 8
&& \text{Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x - 7z =& -8
&&
\\
-5x + 15z =& 40
&& 5 \times \text{ Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\phantom{-5x + } 8z =& 32
&& \text{Add}
\\
z =& 4
&& \text{Divide each side by $8$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-x + 3(4) =& 8
&& \text{Substitute } z = 4 \text{ in Equation 3}
\\
-x + 12 =& 8
&& \text{Multiply}
\\
-x =& -4
&& \text{Subtract each side by $12$}
\\
x =& 4
&& \text{Divide each side by $-1$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

2(4) + 3y - 4(4) =& 4
&& \text{Substitute } x = 4 \text{ and } z = 4 \text{ in Equation 1}
\\
8 + 3y - 16 =& 4
&& \text{Multiply}
\\
3y - 8 =& 4
&& \text{Combine like terms}
\\
3y =& 12
&& \text{Add each side by $8$}
\\
y =& 4
&& \text{Divide each side by $3$}

\end{aligned}
\end{equation}
$



The ordered triple is $\displaystyle \left( 4,4,4 \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...