Sunday, July 21, 2013

Single Variable Calculus, Chapter 7, 7.2-1, Section 7.2-1, Problem 84

If $f''(x) = 3e^x + 5 \sin x, f(0) = 1$ and $f'(0) = 2$, find $f(x)$.


$
\begin{equation}
\begin{aligned}

\text{if } f''(x) =& 3e^x + 5 \sin x, \text{ then}
\\
\\
f'(x) =& \int (3e^x + 5 \sin x) dx
\\
\\
f'(x) =& \int 3e^x dx + \int 5 \sin x dx
\\
\\
f'(x) =& 3e^x - 5 \cos x + C_1

\end{aligned}
\end{equation}
$


when $f'(0) = 2$


$
\begin{equation}
\begin{aligned}

2 =& 3e^0 - 5 \cos (0) + C_1
\\
\\
2 =& 3 - 5(1) + C_1
\\
\\
C_1 =& 4

\end{aligned}
\end{equation}
$


Thus,

$f'(x) = 3e^x - 5 \cos x + 4$

Again, by applying integration,


$
\begin{equation}
\begin{aligned}

f(x) =& \int (3e^x - 5 \cos x + 4) dx
\\
\\
f(x) =& \int 3e^x dx - \int 5 \cos x dx + \int 4 dx
\\
\\
f(x) =& 3e^x - 5 \sin x + 4x + C_2

\end{aligned}
\end{equation}
$


when $f(0) = 1$,


$
\begin{equation}
\begin{aligned}

1 =& 3 e^0 - 5 \sin (0) + 4(0) + C_2
\\
\\
1 =& 3 + C_2
\\
\\
C_2 =& -2

\end{aligned}
\end{equation}
$


Thus,

$f(x) = 3 e^x - 5 \sin x + 4 x - 2$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...