Find $\displaystyle\lim\limits_{x \rightarrow 1^-} \frac{1}{x^3-1}$ and $\displaystyle \lim\limits_{x \rightarrow 1^+} \frac{1}{x^3-1}$
a.) By evaluating $f(x) = \displaystyle \frac{1}{x^3-1}$ for values of $x$ that approach 1 from the left and from the right.
if
$
\quad \begin{array}{cc}
x^- =& 0.99999 \qquad \displaystyle f(x) =& \frac{1}{(0.99999)^3-1} \qquad &=& -33333.67\\
x^+ =& 1.00001 \qquad \displaystyle f(x) =& \frac{1}{(1.00001)^3-1} \qquad &=& 33333
\end{array}
$
b.) By reasoning:
$\displaystyle \lim\limits_{x \rightarrow 1^-} \frac{1}{x^3-1}$ if $x$ is close to 1 but smaller than 1, the denominator is a very small
negative number. Therefore the quotient is a very large negative number.
$\displaystyle \lim\limits_{x \rightarrow 1^+} \frac{1}{x^3-1}$ if $x$ is close to 1 but larger than, the denominator is a very small
positive number. Therefore the quotient is a very large positive number.
c.) By graphing:
The graph shows that as $x$ approaches 1 from the right, the value of the limit approaches $\infty$. On the other hand, as $x$ approaches
1 from the left, the value of the limit approaches $-\infty$
Sunday, July 28, 2013
Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 33
Subscribe to:
Post Comments (Atom)
Summarize the major research findings of "Toward an experimental ecology of human development."
Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...
-
Polysyndeton refers to using several conjunctions in a row to achieve a dramatic effect. That can be seen in this sentence about the child: ...
-
One way to support this thesis is to explain how these great men changed the world. Indeed, Alexander the Great (356–323 BC) was the quintes...
-
Both boys are very charismatic and use their charisma to persuade others to follow them. The key difference of course is that Ralph uses his...
-
At the most basic level, thunderstorms and blizzards are specific weather phenomena that occur most frequently within particular seasonal cl...
-
Equation of a tangent line to the graph of function f at point (x_0,y_0) is given by y=y_0+f'(x_0)(x-x_0). The first step to finding eq...
-
Population policy is any kind of government policy that is designed to somehow regulate or control the rate of population growth. It include...
-
Gulliver cooperates with the Lilliputians because he is so interested in them. He could, obviously, squash them underfoot, but he seems to b...
No comments:
Post a Comment