Sunday, July 28, 2013

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 33

Find $\displaystyle\lim\limits_{x \rightarrow 1^-} \frac{1}{x^3-1}$ and $\displaystyle \lim\limits_{x \rightarrow 1^+} \frac{1}{x^3-1}$


a.) By evaluating $f(x) = \displaystyle \frac{1}{x^3-1}$ for values of $x$ that approach 1 from the left and from the right.


if
$
\quad \begin{array}{cc}
x^- =& 0.99999 \qquad \displaystyle f(x) =& \frac{1}{(0.99999)^3-1} \qquad &=& -33333.67\\
x^+ =& 1.00001 \qquad \displaystyle f(x) =& \frac{1}{(1.00001)^3-1} \qquad &=& 33333
\end{array}
$



b.) By reasoning:



$\displaystyle \lim\limits_{x \rightarrow 1^-} \frac{1}{x^3-1}$ if $x$ is close to 1 but smaller than 1, the denominator is a very small
negative number. Therefore the quotient is a very large negative number.



$\displaystyle \lim\limits_{x \rightarrow 1^+} \frac{1}{x^3-1}$ if $x$ is close to 1 but larger than, the denominator is a very small
positive number. Therefore the quotient is a very large positive number.




c.) By graphing:







The graph shows that as $x$ approaches 1 from the right, the value of the limit approaches $\infty$. On the other hand, as $x$ approaches
1 from the left, the value of the limit approaches $-\infty$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...