Thursday, August 29, 2013

Beginning Algebra With Applications, Chapter 3, 3.3, Section 3.3, Problem 132

Evaluate $3x - 2 (3x - 5) > 4 (2x - 1)$

$
\begin{equation}
\begin{aligned}
3x - 2(3x) - 2 (-5) &> 4 (2x) - 4(1) && \text{Use the Distributive Property to remove the parenthesis}\\
\\
3x - 6x + 10 &> 8x - 4 && \text{Simplify}\\
\\
3x - 6x - 8x &> -10 - 4 && \text{Group terms}\\
\\
-11x &> - 14&& \text{Combine like terms}\\
\\
\frac{-11x}{-11} &> \frac{-14}{-11} && \text{Divide each side by -11}\\
\\
x &< \frac{14}{11} && \text{Remember that if you divide or multiply numbers ,the inequality symbol reverses}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of &quot;Toward an experimental ecology of human development.&quot;

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...