Sunday, August 18, 2013

Calculus of a Single Variable, Chapter 9, 9.10, Section 9.10, Problem 17

Recall binomial series that is convergent when |x|lt1 follows:
(1+x)^k=sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!)x^n
or (1+x)^k= 1 + kx + (k(k-1))/(2!) x^2 + (k(k-1)(k-2))/(3!)x^3 +(k(k-1)(k-2)(k-3))/(4!)x^4- ...
For given function f(x) =1/(1+x)^2 , we may apply Law of Exponents: 1/x^n = x^(-n) to rewrite it as:
f(x) = (1+x)^(-2)
This now resembles (1+x)^k for binomial series.
By comparing "(1+x)^k " with "(1+x)^(-2) ", we have the corresponding values:
x=x and k = -2 .
Plug-in the values on the formula for binomial series, we get:
(1+x)^(-2)=sum_(n=0)^oo (-2(-2-1)(-2-2)...(-2-n+1))/(n!)x^n
= 1 + (-2)x + (-2(-2-1))/(2!) x^2 + (-2(-2-1)(-2-2))/(3!)x^3 +(-2(-2-1)(-2-2)(-2-3))/(4!) x^4- ...
= 1 -2x + 6/(2!) x^2 -24/(3!)x^3 +120/(4!)x^4- ...
= 1- 2x +3x^2 -4x^3 +5x^4- ...
or sum_(n=0)^oo (-1)^n (n+1)x^n
Therefore, the Maclaurin series for the function f(x) =1/(1+x)^2 can be expressed as:
1/(1+x)^2 =sum_(n=0)^oo (-1)^n (n+1)x^n
or
1/(1+x)^2 =1- 2x +3x^2 -4x^3 +5x^4- ...

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...