Saturday, August 31, 2013

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 5

int sin^2(pix)cos^5(pix) dx
To solve, apply the Pythagorean identity sin^2 theta + cos^2 theta =1 repeatedly until the integral is in the form int u^n du .
= int sin^2(pix)cos^3(pix)cos^2(pix) dx
=int sin^2(pix)cos^3(pix)(1-sin^2(pix)) dx
=int [sin^2(pix)cos^3(pix) - sin^4(pix)cos^3(pix)]dx
= int [ sin^2(pix)cos(pix)cos^2(pix) - sin^4(pix)cos(pix)cos^2(pix)]dx
= int[sin^2(pix)cos(pix)(1-sin^2(pix)) -sin^4(pix)cos(pix)(1-sin^2(pix))]dx
= int [sin^2(pix)cos(pix)-sin^4(pix)cos(pix) - sin^4(pix)cos(pix)+sin^6(pix)cos(pix)] dx
int [sin^2(pix)cos(pix)-2 sin^4(pix)cos(pix)+sin^6(pix)cos(pix)] dx
=intsin^2(pix)cos(pix)dx-int2sin^4(pix)cos(pix)dx+intsin^6(pix)cos(pix)dx
To take the integral of this, apply u-substitution method.
u = sin (pix)
du= pi cos (pix) dx
(du)/pi = cos(pix) dx
= int u^2 *(du)/pi - int 2u^4 * (du)/pi + intu^6 * (du)/pi
= 1/pi int u^2 du - 2/pi int u^4 du + int 1/pi u^6 du
= 1/pi*u^2/3-2/pi*u^5/5 + 1/pi*u^7/7 + C
= u^2/(3pi) - (2u^5)/(5pi) + u^7/(7pi) + C
And, substitute back u = sin (pix) .
= (sin^2 (pix))/(3pi) - (2sin^5(pix))/(5pi)+ (sin^7(pix))/(7pi) + C

Therefore, int sin^2(pix)cos^5(pix) dx= (sin^2 (pix))/(3pi) - (2sin^5(pix))/(5pi)+ (sin^7(pix))/(7pi) + C.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...