Tuesday, August 20, 2013

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 28

Differentiate $\displaystyle f(t) = \frac{t}{5 + 2t} - 2t^4$

$
\begin{equation}
\begin{aligned}
f'(t) &= \frac{d}{dt} \left( \frac{t}{5 + 2t} \right) - \frac{d}{dt} (2t^4) \\
\\
&= \frac{(5 + 2t) \cdot \frac{d}{dt} (t) - (t) \cdot \frac{d}{dt} (5 + 2t)}{(5 + 2t)^2} - 8t^3\\
\\
&= \frac{(5 + 2t)(1) - (t) (2)}{(5 + 2t)^2} - 8t^3\\
\\
&= \frac{5 + 2t - 2t}{(t + 2t)^2} - 8t^3\\
\\
&= \frac{5}{(5 + 2t)^2} - 8t^3\\
\\
&= \frac{5 - 8t^3 (t + 2t)^2}{(5 + 2t)^2} \\
\\
&= \frac{5 - 8t^3 \left[ 5^2 + 2(5)(2t)+(2t)^2 \right]}{(5 + 2t)^2}\\
\\
&= \frac{5 - 8t^3 \left[ 25 + 20t + 4t^2 \right]}{(t + 2t)^2}\\
\\
&= \frac{5 - 200t^3 - 160 t^4 - 32t^5}{(5 + 2t)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...