Wednesday, August 28, 2013

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 40

Solve the system of equations $\begin{equation}
\begin{aligned}

2x + 3y - z =& 0 \\
x - 4y + 2z =& 0 \\
3x - 5y - z =& 0

\end{aligned}
\end{equation}
$. If the system is inconsistent or has dependent equations, say so.


$
\begin{equation}
\begin{aligned}

4x + 6y - 2z =& 0
&& 2 \times \text{ Equation 1}
\\
x - 4y + 2z =& 0
&& \text{Equation 2}
\\
\hline

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

5x + 2y \phantom{+2z} =& 0
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

-2x - 3y + z =& 0
&& -1 \times \text{ Equation 1}
\\
3x - 5y - z =& 0
&& \text{Equation 3}
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

x - 8y \phantom{+z} =& 0
&& \text{Add}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5x + 2y =& 0
&& \text{New Equation 2}
\\
x -8y =& 0
&& \text{New Equation 3}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

20x + 8y =& 0
&&4 \times \text{ New Equation 2}
\\
x - 8y =& 0
&&
\\
\hline

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

21x \phantom{+8y} =& 0
&& \text{Add}
\\
x =& 0
&& \text{Divide each side by $21$}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

5(0) + 2y =& 0
&& \text{Substitute } x = 0 \text{ in New Equation 2}
\\
2y =& 0
&& \text{Multiply}
\\
y =& 0
&& \text{Divide each side by $2$}

\end{aligned}
\end{equation}
$




$
\begin{equation}
\begin{aligned}

2(0) + 3(0) - z =& 0
&& \text{Substitute } x = 0 \text{ and } y = 0 \text{ in Equation 1}
\\
0 + 0 - z =& 0
&& \text{Multiply}
\\
z =& 0
&& \text{Divide each side by $-1$}

\end{aligned}
\end{equation}
$


The ordered triple is $\displaystyle \left( 0,0,0 \right)$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...