Thursday, August 22, 2013

Single Variable Calculus, Chapter 1, 1.1, Section 1.1, Problem 23

Evaluate the difference quotient $\displaystyle \frac{f (3+h)-f(3)}{h}$ for the function $f(x) = 4 + 3x - x^2$


$
\begin{equation}
\begin{aligned}
\displaystyle \frac{f (3+h)-f(3)}{h} &= \frac{4+3(3+h)-(3+h)^2 - [4+3(3)-(3)^2]}{h}
&& ( \text{Substitute $f(3+h)$ and $f(3)$ to the function $f(x)$, then divide it by $h$} ) \\
\\
&= \frac{4+9+3h-[9+6h+h^2]-4-9+9}{h}
&&( \text{ Simplify the equation})\\
\\
&= \frac{3h-6h-h^2}{h}
&&( \text{ Combine like terms})\\
\\

&= \frac{-3h-h^2}{h} = \frac{\cancel{h}(-3 - h)}{\cancel{h}}
&&( \text{ Factor the numerator and cancel out like terms})\\
\\
& = -3 -h

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...