Sunday, August 25, 2013

College Algebra, Chapter 2, 2.2, Section 2.2, Problem 70

Show that the equation $x^2 + y^2 + 2x + y + 1 = 0$ represents a circle. Find the center and radius of the circle.


$
\begin{equation}
\begin{aligned}

x^2 + y^2 + 2x + y + 1 =& 0
&& \text{Model}
\\
\\
x^2 + y^2 + 2x + y =& -1
&& \text{Subtract } 1
\\
\\
(x^2 + 2x + \underline{ }) + (y^2 + y + \underline{ }) =& -1
&& \text{Group terms}
\\
\\
(x^2 + 2x + 1) + \left( y^2 + y \frac{1}{4} \right) =& -1 + 1 + \frac{1}{4}
&& \text{Complete the square: add } \left( \frac{2}{2} \right)^2 = 1 \text{ and } \left( \frac{1}{2} \right)^2 = \frac{1}{4}
\\
\\
(x + 1)^2 + \left(y + \frac{1}{2} \right)^2 =& \frac{1}{4}
&& \text{Perfect Square}

\end{aligned}
\end{equation}
$


Recall that the general equation for the circle with
circle $(h,k)$ and radius $r$ is..

$(x - h)^2 + (y - k)^2 = r^2$

By observation,

The center is at $\displaystyle \left( -1, \frac{-1}{2} \right)$ and the radius is $\displaystyle \sqrt{\frac{1}{4}} = \frac{1}{2}$.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...