Sunday, May 25, 2014

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 13

intsqrt(x^2-9)/x^3dx
Let's evaluate the integral: Apply integration by parts,
intuv'=uv-intu'v
Let u=sqrt(x^2-9)
v'=1/x^3
u'=d/dx(sqrt(x^2-9))
u'=1/2(x^2-9)^(1/2-1)(2x)
u'=x/sqrt(x^2-9)
v=int1/x^3dx
v=x^(-3+1)/(-3+1)
v=-1/(2x^2)
intsqrt(x^2-9)/x^3dx=sqrt(x^2-9)(-1/(2x^2))-intx/sqrt(x^2-9)(-1/(2x^2))dx
=-sqrt(x^2-9)/(2x^2)+1/2int1/(xsqrt(x^2-9))dx
Apply the integral substitution y=sqrt(x^2-9)
dy=1/2(x^2-9)^(1/2-1)(2x)dx
dy=x/sqrt(x^2-9)dx
dy=(xdx)/y
=-sqrt(x^2-9)/(2x^2)+1/2int(ydy)/x(1/(xy))
=-sqrt(x^2-9)/(2x^2)+1/2intdy/x^2
=-sqrt(x^2-9)/(2x^2)+1/2intdy/(y^2+9)
Now use the standard integral:int1/(x^2+a^2)dx=1/aarctan(x/a)+C
=-sqrt(x^2-9)/(2x^2)+1/2(1/3arctan(y/3))
Substitute back y=sqrt(x^2-9) and add a constant C to the solution,
=-sqrt(x^2-9)/(2x^2)+1/6arctan(sqrt(x^2-9)/3)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...