Wednesday, May 21, 2014

Calculus of a Single Variable, Chapter 6, 6.4, Section 6.4, Problem 59

y'+3x^2y=x^2y^3
Multiply the above equation by y^(-3)
y^(-3)dy/dx+3x^2y(y^(-3))=x^2
y^-3dy/dx+3x^2y^(-2)=x^2
Taking the transformation v=y^(-2)
(dv)/dx=d/dy(y^(-2))*dy/dx
(dv)/dx=-2y^(-3)dy/dx
-1/2(dv)/dx=y^(-3)dy/dx
Now the Bernoulli equation is transformed as ,
-1/2(dv)/dx+3x^2v=x^2
(dv)/dx-6x^2v=-2x^2
Now the above is a linear equation in the dependent variable v and independent variable y.
The integrating factor is n(x)=e^(int(-6x^2dx))
=e^(-6x^3/3)
=e^(-2x^3)
Then,
e^(-2x^3)*(dv)/dx-6e^(-2x^3)*x^2v=-2e^(-2x^3)*x^2
d/dx(e^(-2x^3)*v)=e^(-2x^3)(dv)/dx+ve^(-2x^3)(-6x^2)
=e^(-2x^3)(dv)/dx-6e^(-2x^3)*x^2v
=-2e^(-2x^3)*x^2
intd/dx(e^(-2x^3)*v)dx=int-2e^(-2x^3)x^2dx
e^(-2x^3)*v=-2inte^(-2x^3)*x^2dx
Let t=x^3
dt=3x^2dx
e^(-2x^3)*v=-2inte^(-2t)*dt/3
=-2/3(e^(-2t)/(-2))+C
=e^(-2t)/3+C
Substitute back t=x^3
e^(-2x^3)*v=1/3e^(-2x^3)+C
Substitute back v=y^(-2)
e^(-2x^3)*y^(-2)=1/3e^(-2x^3)+C
y^-2=1/3+C/e^(-2x^3)
1/y^2=1/3+Ce^(2x^3)
y^2 = 1 / (1/3+Ce^(2x^3))
y = +-sqrt(3)/(Ce^(2x^3) + 1)

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...