Saturday, May 31, 2014

College Algebra, Chapter 7, 7.4, Section 7.4, Problem 54

Solve for $x$ if the matrix $\displaystyle \left| \begin{array}{ccc}
a & b & x - a \\
x & x + b & x \\
0 & 1 & 1
\end{array} \right| = 0$.

For this matrix, we have


$
\begin{equation}
\begin{aligned}

0 =& a \left| \begin{array}{cc}
x + b & x \\
1 & 1
\end{array} \right| - b \left| \begin{array}{cc}
x & x \\
0 & 1
\end{array} \right| + (x - a) \left| \begin{array}{cc}
x & x + b \\
0 & 1
\end{array} \right|
&& \text{Expand}
\\
\\
0 =& a [(x + b)(1) - x \cdot 1] - b (x \cdot 1 - x \cdot 0) + (x - a) [x \cdot 1 - (x + b)(0)]
&& \text{Simplify}
\\
\\
0 =& a(x + b - x) - b(x) + (x - a) (x)
&& \text{Distributive Property}
\\
\\
0 =& ab - bx + x^2 - ax
&& \text{Simplify}
\\
\\
0 =& x^2 - ax - bx + ab
&& \text{Factor}
\\
\\
0 =& (x - a)(x - b)
&& \text{Zero Product Property}
\\
\\
x - a =& 0 \quad x - b = 0
&&
\\
\\
x =& a \qquad x = b
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...