Wednesday, May 7, 2014

sum_(n=1)^oo (-1)^n/sqrt(n) Determine the convergence or divergence of the series.

To determine the convergence or divergence of the series sum_(n=1)^oo (-1)^n/sqrt(n) , we may apply the Root Test.
In Root test, we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or
lim_(n-gtoo) |a_n|^(1/n)= L
 Then ,we follow the conditions:
a) L lt1 then the series converges absolutely.
b) Lgt1 then the series diverges.
c) L=1 or does not exist  then the test is inconclusive.The series may be divergent, conditionally convergent, or absolutely convergent.
For the given series sum_(n=1)^oo (-1)^n/sqrt(n) , we have a_n =(-1)^n/sqrt(n) .
Applying the Root test, we set-up the limit as: 
lim_(n-gtoo) |(-1)^n/sqrt(n)|^(1/n) =lim_(n-gtoo) (1/sqrt(n))^(1/n)
Note: |(-1)^n| = 1
Apply radical property: root(n)(x) =x^(1/n) and Law of exponent: (x/y)^n = x^n/y^n.
lim_(n-gtoo) (1/sqrt(n))^(1/n) =lim_(n-gtoo) (1/n^(1/2))^(1/n)
                          =lim_(n-gtoo) 1^(1/n) /n^(1/2*1/n)
                          =lim_(n-gtoo) 1^(1/n) /n^(1/(2n))
                          =lim_(n-gtoo) 1 /n^(1/(2n))
Apply the limit property: lim_(x-gta)[(f(x))/(g(x))] =(lim_(x-gta) f(x))/(lim_(x-gta) g(x)).
lim_(n-gtoo) 1 /n^(1/(2n)) =(lim_(n-gtoo) 1 )/(lim_(n-gtoo)n^(1/(2n)))
                      = 1/1
                      =1
The limit value L = 1 implies that the series may be divergent, conditionally convergent, or absolutely convergent.
To verify, we use alternating series test on sum (-1)^n a_n .
a_n = 1/sqrt(n) is positive and decreasing from N=1 .
lim_(n-gtoo)1/sqrt(n) = 1/oo = 0
Based on alternating series test condition,  the series sum_(n=1)^oo (-1)^n/sqrt(n) converges.
Apply p-series test on sum |a_n| .
sum_(n=1)^oo |(-1)^n/sqrt(n)|=sum_(n=1)^oo 1/sqrt(n)
                      =sum_(n=1)^oo 1/n^(1/2)
Based on p-series test condition,  we have p=1/2 that satisfies 0ltplt=1 .
Thus, the series  sum_(n=1)^oo |(-1)^n/sqrt(n)| diverges.      
Notes:
In p-series test, we follow:
-if p is within the interval of 0ltplt=1 then the series diverges.
-if p is within the interval of pgt1 then the series converges.
Absolute Convergence:  sum a_n  is absolutely convergent if sum|a_n|   is convergent.             
Conditional Convergence:  sum a_n is conditionally convergent if sum|a_n|  is divergent and sum a_n is convergent.       
              
Conclusion:
The series sum_(n=1)^oo (-1)^n/sqrt(n) is conditionally convergent since  sum_(n=1)^oo (-1)^n/sqrt(n) is convergent  and sum_(n=1)^oo |(-1)^n/sqrt(n)| is divergent.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...