Saturday, May 3, 2014

sinh^-1t = ln(t + sqrt(t^2 + 1)) Prove

To prove
sinh^-1 t =ln(t+sqrt(t^2+1))
let
sinh^-1 t = x
t=sinh(x)= (e^x -e^(-x))/2 =(e^x - (1/(e^x)))/2= (e^(2x) -1)/(2(e^x))
let   t= (e^(2x) -1)/(2(e^x))
=> 2e^x t = e^(2x) -1
=> let e^x = u so,
2ut=u^2 -1
=> u^2 -2ut -1 =0  is of the quadratic form ax^2 +bx+c = 0 so finding the roots using the quadratic formula 
(-b+-sqrt(b^2 -4ac))/(2a)
here in the equation u^2 -2ut -1 =0
a=1 , b=-2, c=-1
u=(-(-2t)+-sqrt(4t^2-4(1)(-1)))/2
u=(2t+-sqrt(4t^2+4))/2
=(2t+-2sqrt(t^2+1))/2
=t+-sqrt(t^2+1)
Sinceu = e^x > 0 then  t+sqrt(t^2+1)>0
So e^x=t+sqrt(t^2+1)
x=ln(t+sqrt(t^2+1))
Since
sinh^-1 t = x
it follows that
sinh^-1 t = ln(t+sqrt(t^2+1))

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...