Wednesday, November 23, 2016

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 16

int_(sqrt(2)/3)^(2/3)1/(x^5sqrt(9x^2-1))dx
Let's first evaluate the indefinite integral by integral substitution,
Let x=1/3sec(u)
=>dx=1/3sec(u)tan(u)du
int1/(x^5sqrt(9x^2-1))dx=int(1/((1/3sec(u))^5sqrt(9(1/3sec(u))^2-1)))1/3sec(u)tan(u)du
=int(1/(1/243sec^5(u)sqrt(sec^2(u)-1)))1/3sec(u)tan(u)du
Now use the identity:sec^2(theta)=1+tan^2(theta)
=int(243/(3sec^5(u)sqrt(1+tan^2(u)-1)))sec(u)tan(u)du
=int(81sec(u)tan(u))/(sec^5(u)sqrt(tan^2(u)))du
=81int1/(sec^4(u))du
=81intcos^4(u)du
Now let's use the identity:cos^2(theta)=(1+cos(2theta))/2
=81int((1+cos(2u))/2)^2du
=81int(1+cos^2(2u)+2cos(2u))/4du
=81int(1/4+(cos^2(2u))/4+1/2cos(2u))du
=81(int1/4du+int(cos^2(2u))/4du+int(cos(2u))/2du)
=81(u/4+1/4int(1+cos(4u))/2du+1/2intcos(2u)du)
=81(u/4+1/4int(1/2+cos(4u)/2)du+1/2(sin(2u))/2)
=81(u/4+1/4(int1/2du+intcos(4u)/2du)+1/4sin(2u))
=81(u/4+1/4(u/2+1/2sin(4u)/4)+1/4sin(2u)) =81(u/4+u/8+sin(4u)/32+sin(2u)/4)
=81((3u)/8+sin(4u)/32+sin(2u)/4)
Now recall that we have used x=1/3sec(u)
=>sec(u)=3x
=>cos(u)=1/(3x)
=>u=arccos(1/(3x))
Substitute back u and add a constant C to the solution,
=81(3/8arccos(1/(3x))+1/32sin(4arccos(1/(3x)))+1/4sin(2arccos(1/(3x))))+C
Now let's evaluate the definite integral,
int_(sqrt(2)/3)^(2/3)dx/(x^5sqrt(9x^2-1))=81[3/8arccos(1/(3x))+1/32sin(4arccos(1/(3x)))+1/4sin(2arccos(1/(3x)))]_(sqrt(2)/3)^(2/3)
=81[3/8arccos(1/2)+1/32sin(4arccos(1/2))+1/4sin(2arccos(1/2))]-81[3/8arccos(1/sqrt(2))+1/32sin(4arccos(1/sqrt(2)))+1/4sin(2arccos(1/sqrt(2)))]
=81[3/8*pi/3+1/32sin(4*pi/3)+1/4sin(2*pi/3)]-81[3/8*pi/4+1/32sin(4*pi/4)+1/4sin(2*pi/4)]
=81[pi/8+1/32sin((4pi)/3)+1/4sin((2pi)/3)]-81[(3pi)/32+1/32sin(pi)+1/4sin(pi/2)]
=81[pi/8+1/32(-sqrt(3)/2)+1/4(sqrt(3)/2)]-81[(3pi)/32+1/32(0)+1/4(1)]
=81[pi/8+sqrt(3)/2(-1/32+1/4)-(3pi)/32-1/4]
=81[pi/8-(3pi)/32+sqrt(3)/2(7/32)-1/4]
=81[pi/32+(7sqrt(3))/64-1/4]

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...