Tuesday, November 29, 2016

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 4

You need to use the following substitution, such that:
x = sin t => dx = cos t dt
1 - x^2 = 1 - sin^2 t = cos^2 t
Changing the variable, yields:
int_0^1 x^3*sqrt(1 - x^2)dx = int_(t_1)^(t_2) sin^3 t*sqrt (cos^2 t)*cos t dt
int_(t_1)^(t_2) sin^3 t*sqrt (cos^2 t)*cos t dt = int_(t_1)^(t_2) sin^3 t*cos t*cos t dt
int_(t_1)^(t_2) sin^3 t*cos^2 t dt = int_(t_1)^(t_2) sin^2 t*cos^2 t*sin t dt
int_(t_1)^(t_2) sin^2 t*cos^2 t*sin tdt = int_(t_1)^(t_2) (1 - cos^2 t)*cos^2 t*sin tdt
You need to make the next substitution, such that:
cos t = u => -sin t dt = du
int_(u_1)^(u_2) (1 - u^2)*u^2*(-du) =- int_(u_1)^(u_2)u^2 du + int_(u_1)^(u_2)u^4du
int_(u_1)^(u_2) (1 - u^2)*u^2*(-du) =(-(cos t)^3/3 + (cos t)^5/5)|_(t_1)^(t_2)
Since x = sin t => t = arcsin x
int_0^1 x^3*sqrt(1 - x^2)dx = (-(cos (arcsin x))^3/3 + (cos (arcsin x)^5/5)|_(0)^(1)
int_0^1 x^3*sqrt(1 - x^2)dx = (-(cos (arcsin 1))^3/3 + (cos (arcsin 1)^5/5 + (cos (arcsin 0))^3/3 - (cos (arcsin 0))^5/5)
int_0^1 x^3*sqrt(1 - x^2)dx = -(cos (pi/2))^3/3 + (cos(pi/2))^5/5 + (cos 0)^3/3 - (cos 0)^5/5
int_0^1 x^3*sqrt(1 - x^2)dx = 1/3 - 1/5
int_0^1 x^3*sqrt(1 - x^2)dx = 2/15
Hence, evaluating the definite integral yields int_0^1 x^3*sqrt(1 - x^2)dx = 2/15.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...