Saturday, November 5, 2016

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 12

Determine the integral $\displaystyle \int x \cos^2 x dx$


$
\begin{equation}
\begin{aligned}

\int x \cos^2 x dx =& \int x \left( \frac{\cos 2x + 1}{2} \right) dx
\qquad \text{Apply half-angle formula } \cos 2x = 2 \cos^2 x - 1
\\
\\
\int x \cos^2 x dx =& \frac{1}{2} \int (x \cos 2x + x ) dx
\\
\\
\int x \cos^2 x dx =& \frac{1}{2} \int x \cos 2x dx + \frac{1}{2} \int x dx

\end{aligned}
\end{equation}
$


We integrate term by term

@ 1st term

$\displaystyle \frac{1}{2} \int x \cos 2x dx \qquad$ Using Formula of Integration by parts $\int u dv = uv - \int v du$

Let $u = x$, then $du = dx$, and $dv = \cos 2x dx$, then $\displaystyle v = \frac{1}{2} \sin 2 x$. Thus,


$
\begin{equation}
\begin{aligned}

\frac{1}{2} \int x \cos 2x dx =& \frac{1}{2} \left[ (x) \left( \frac{1}{2} \sin 2x \right ) - \frac{1}{2} \int \sin 2x dx \right]
\\
\\
\frac{1}{2} \int x \cos 2x dx =& \frac{x \sin 2 x}{4} - \frac{1}{4} \left( \frac{- \cos 2x}{2} \right) + c
\\
\\
\frac{1}{2} \int x \cos 2x dx =& \frac{x \sin 2x}{4}+ \frac{\cos 2x}{8} + c

\end{aligned}
\end{equation}
$


@ 2nd term


$
\begin{equation}
\begin{aligned}

\frac{1}{2} \int x dx =& \frac{1}{2} \left( \frac{x^{1 + 1}}{1 + 1} \right) + c
\\
\\
\frac{1}{2} \int x dx =& \frac{1}{2} \left( \frac{x^2}{2} \right) + c
\\
\\
\frac{1}{2} \int x dx =& \frac{x^2 }{4} + c

\end{aligned}
\end{equation}
$


Add the results of integration term by term, we have

$\displaystyle \int x \cos^2 x dx = \frac{x \sin 2x}{4} + \frac{\cos 2x}{8} + \frac{x^2}{4} + c$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...