Thursday, November 3, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 89

Show that $\displaystyle \frac{d^2 y}{dx^2} = \frac{d^2 y}{du^2} \left( \frac{du}{dx} \right) ^2 + \frac{dy}{du} \frac{d^2 u}{dx^2} $ having $y = f(u)$ and $u = g(x)$ where $f$ and $g$ are twice differentiable functions.

From the definition of Chain Rule,

$\displaystyle \frac{dy}{dx} = \frac{dy}{du} \left( \frac{du}{dx} \right)$

Thus,



$
\begin{equation}
\begin{aligned}

\frac{d^2y}{dx^2} =& \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{dx} \left( \frac{dy}{du} \frac{du}{dx} \right) = \frac{d}{dx} \left( \frac{dy}{du} \right) \frac{du}{dx} + \frac{dy}{du} \frac{d}{dx} \left( \frac{du}{dx} \right)
\\
\\
\frac{d^2y}{dx^2} =& \frac{d}{du} \left( \frac{dy}{du} \right) \left( \frac{du}{dx} \right) \frac{du}{dx} + \frac{dy}{du} \left( \frac{d^2 u}{dx^2} \right)
\\
\\
\frac{d^2y}{dx^2} =& \frac{d^2y}{du^2} \left( \frac{du}{dx} \right) ^2 + \frac{dy}{du} \left( \frac{d^2u}{dx^2} \right)



\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...