Saturday, November 12, 2016

Single Variable Calculus, Chapter 2, 2.1, Section 2.1, Problem 8

Given the equation of displacement $s= 2 \sin \pi t + 3 \cos \pi t$ in centimeters of a particle moving back and forth along a straight line. Where $t$ is measured in seconds.

a. Find the average velocity over the given time intervals:

(i) [1,2]
(ii) [1,1.1]
(iii) [1,1.01]
(iv) [1,1.001]


$
\begin{equation}
\begin{aligned}

\begin{array}{|c|c|c|c|c|c|}
\hline\\
& t_{1_{(s)}} & t_{2_{(s)}} & S_{1_{(cm)}} = 2\sin \pi t_1 + 3 \cos \pi t_1 & S_{2_{(cm)}} = 2 \sin \pi t_2 + 3 \cos \pi t_2 & V_{ave_{(\frac{m}{s})}} = \frac{S_2 - S_1}{t_2 - t_1} \\
\hline\\
\text{(i) } & 1 & 2 & -3 & 3 & 6 \\
\hline\\
\text{(ii) }& 1 & 1.1 & -3 & -3.4712 & -4.712 \\
\hline\\
\text{(iii) }& 1 & 1.01 & -3 & -3.0613 & -6.13 \\
\hline\\
\text{(iv) }& 1 & 1.001 & -3 & -3.0063 & -6.3\\
\hline
\end{array}


\end{aligned}
\end{equation}
$


b. Estimate the instantaneous velocity when $t=1$

Referring to the table, the instantaneous velocity at $t = 1$ is approximately equal to -6.

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...