Tuesday, November 29, 2016

sum_(n=1)^oo 1/n^5 Use the Integral Test to determine the convergence or divergence of the p-series.

The Integral test is applicable if f is positive and decreasing function on the infinite interval [k, oo) where kgt= 1 and a_n=f(x) . Then the series sum_(n=1)^oo a_n converges if and only if the improper integral int_1^oo f(x) dx converges. If the integral diverges then the series also diverges.
For the given series sum_(n=1)^oo 1/n^5 , the a_n = 1/n^5 then applying a_n=f(x), we consider:
f(x) = 1/x^5 .  
As shown on the graph for f(x), the function is positive on the interval [1,oo). As x at the denominator side gets larger, the function value decreases.

Therefore, we may determine the convergence of the improper integral as:
int_1^oo 1/x^5 = lim_(t-gtoo)int_1^t 1/x^5 dx
Apply the Law of exponent: 1/x^m = x^(-m) .
lim_(t-gtoo)int_1^t 1/x^5 dx =lim_(t-gtoo)int_1^t x^(-5) dx
Apply the Power rule for integration: int x^n dx = x^(n+1)/(n+1)
lim_(t-gtoo)int_1^t 1/x^5 dx =lim_(t-gtoo)[ x^(-5+1)/(-5+1)]|_1^t
                            =lim_(t-gtoo)[ x^(-4)/(-4)]|_1^t
                            =lim_(t-gtoo)[ -1/(4x^4)]|_1^t
Apply the definite integral formula: F(x)|_a^b = F(b)-F(a) .
lim_(t-gtoo)[ -1/(4x^4)]|_1^t=lim_(t-gtoo)[-1/(4*t^4) -(-1/(4*1^4))]
                             =lim_(t-gtoo)[(-1/(4t^4))-(-1/4 )]
                            =lim_(t-gtoo)[-1/(4t^4)+1/4]
                           = 1/4 or0.25
Note: lim_(t-gtoo)[1/4] =1/4 and lim_(t-gtoo)1/(4t^4) = 1/oo or 0
The integral int_1^oo 1/x^5  is convergent therefore the p-series sum_(n=1)^oo 1/n^5 must also be convergent. 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...