Monday, December 5, 2016

int (8x) / (x^3+x^2-x-1) dx Use partial fractions to find the indefinite integral

int(8x)/(x^3+x^2-x-1)dx
(8x)/(x^3+x^2-x-1)=(8x)/((x^3+x^2)-1(x+1))
=(8x)/((x^2(x+1)-1(x+1)))
=(8x)/((x+1)(x^2-1))
=(8x)/((x+1)(x+1)(x-1))
=(8x)/((x-1)(x+1)^2)
Now let's form the partial fraction template,
(8x)/((x-1)(x+1)^2)=A/(x-1)+B/(x+1)+C/(x+1)^2
Multiply the equation by the denominator,
8x=A(x+1)^2+B(x-1)(x+1)+C(x-1)
8x=A(x^2+2x+1)+B(x^2-1)+C(x-1)
8x=Ax^2+2Ax+A+Bx^2-B+Cx-C
8x=(A+B)x^2+(2A+C)x+A-B-C
Comparing the coefficients of the like terms,
A+B=0      -----------------(1)
2A+C=8   -----------------(2)
A-B-C=0  ---------------(3)
From equation 1,
B=-A
Substitute B in equation 3,
A-(-A)-C=0
2A-C=0      ---------------(4)
Now add equations 2 and 4,
4A=8
A=8/4
A=2
B=-A=-2
Plug in the value of A in equation 4,
2(2)-C=0
C=4
Plug in the values of A, B and C in the partial fraction template,
(8x)/((x-1)(x+1)^2)=2/(x-1)+(-2)/(x+1)+4/(x+1)^2  
int(8x)/(x^3+x^2-x-1)dx=int(2/(x-1)-2/(x+1)+4/(x+1)^2)dx
Apply the sum rule,
=int2/(x-1)dx-int2/(x+1)dx+int4/(x+1)^2dx
Take the constant out,
=2int1/(x-1)dx-2int1/(x+1)dx+4int1/(x+1)^2dx
Now let's evaluate the above three integrals separately,
int1/(x-1)dx
Apply integral substitution:u=x-1
du=1dx
=int1/udu
use the common integral int1/xdx=ln|x|
=ln|u|
Substitute back u=x-1
=ln|x-1|
Now let's evaluate second integral,
int1/(x+1)dx
Apply integral substitution: u=x+1
du=dx
=int1/udu
=ln|u|
Substitute back u=x+1
=ln|x+1|
Now evaluate the third integral,
int1/(x+1)^2dx
apply integral substitution: u=(x+1)
du=dx
=int1/u^2du
=intu^(-2)du
apply power rule,
=u^(-2+1)/(-2+1)
=-1/u
Substitute back u=x+1
=-1/(x+1)
int(8x)/(x^3+x^2-x-1)dx=2ln|x-1|-2ln|x+1|+4(-1/(x+1))
Simplify and add a constant C to the solution,
=2ln|x-1|-2ln|x+1|-4/(x+1)+c
 

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...