Wednesday, January 11, 2017

Calculus: Early Transcendentals, Chapter 7, 7.3, Section 7.3, Problem 25

intx/sqrt(x^2+x+1)dx
Let's rewrite the integrand by completing the square of the denominator,
=intx/sqrt((x+1/2)^2+3/4)dx
Now let's apply the integral substitution,
Let u=x+1/2
x=u-1/2
du=1dx
=int(u-1/2)/sqrt(u^2+3/4)du
=int(2u-1)/sqrt(4u^2+3)du
Now apply the sum rule,
=int(2u)/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du
=2intu/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du
Now let's evaluate the first integral by applying the integral substitution,
Let v=4u^2+3
dv=8udu
intu/sqrt(4u^2+3)du=int1/(8sqrt(v))dv
=1/8intv^(-1/2)dv
=1/8(v^(-1/2+1))/(-1/2+1)
=1/8v^(1/2)/(1/2)
=2/8v^(1/2)
=1/4sqrt(v)
substitute back v=4u^2+3
=1/4sqrt(4u^2+3)
Now let's evaluate the second integral int1/sqrt(4u^2+3)du using integral substitution,
For sqrt(bx^2+a) substitute x=sqrt(a)/sqrt(b)tan(v) ,
Let u=sqrt(3)/2tan(v)
du=sqrt(3)/2sec^2(v)dv
int1/sqrt(4v^2+3)du=int(sqrt(3)/2sec^2(v))/sqrt(4(sqrt(3)/2tan(v))^2+3)dv
=int(sqrt(3)sec^2(v))/(2sqrt(3tan^2(v)+3))dv
=sqrt(3)/2int(sec^2(v))/sqrt(3tan^2(v)+3)dv
=sqrt(3)/2int(sec^2(v))/(sqrt(3)sqrt(tan^2+1))dv
=1/2int(sec^2(v))/sqrt(tan^2(v)+1)dv
Now use the identity:1+tan^2(x)=sec^2(x)
=1/2int(sec^2(v))/sqrt(sec^2(v))dv
assuming sec(v)>=0
=1/2intsec(v)dv
Now using the common integral,
intsec(v)dx=ln((sec(v)+tan(v))
=1/2(ln(sec(v)+tan(v))
Substitute back v=arctan((2u)/sqrt(3))
=1/2[ln{sec(arctan((2u)/sqrt(3)))+tan(arctan((2u)/sqrt(3))}]
=1/2[ln{sqrt(1+(4u^2)/3)+(2u)/sqrt(3)}]
int(2u-1)/sqrt(4u^2+3)du=2(1/4sqrt(4u^2+3))-1/2ln(sqrt(1+4u^2/3)+(2u)/sqrt(3))
=1/2sqrt(4u^2+3)-1/2ln(sqrt(1+(4u^2)/3)+(2u)/sqrt(3))
Substitute back u=x+1/2
=1/2sqrt(4(x+1/2)^2+3)-1/2ln(sqrt(1+(4(x+1/2)^2)/3)+(2(x+1/2))/sqrt(3))
=1/2sqrt(4(x^2+1/4+x)+3)-1/2ln(sqrt(1+4/3(x^2+1/4+x))+(2/sqrt(3))(2x+1)/2)
=1/2sqrt(4x^2+1+4x+3)-1/2ln(sqrt((3+4x^2+1+4x)/3)+(2x+1)/sqrt(3))
=1/2sqrt(4x^2+4x+4)-1/2ln(sqrt((4x^2+4x+4)/3)+(2x+1)/sqrt(3))
=1/2sqrt(4(x^2+x+1))-1/2ln((2/sqrt(3))sqrt(x^2+x+1)+(2x+1)/sqrt(3))
=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))
add a constant C to the solution,
=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...