Saturday, January 14, 2017

int 1/(xsqrt(4x^2+9)) dx Find the indefinite integral

Indefinite integral are written in the form of int f(x) dx = F(x) +C
 where: f(x) as the integrand
           F(x) as the anti-derivative function 
           C  as the arbitrary constant known as constant of integration
For the given problem int 1/(xsqrt(4x^2+9)) dx , it resembles one of the formula from integration table.  We may apply the integral formula for rational function with roots as:
int dx/(xsqrt(x^2+a^2))= -1/aln((a+sqrt(x^2+a^2))/x)+C .
 For easier comparison, we  apply u-substitution by letting:  u^2 =4x^2 or (2x)^2 then u = 2x or u/2 =x .
Note: The corresponding value of a^2=9 or 3^2 then  a=3 .
For the derivative of u , we get: du = 2 dx or  (du)/2= dx .
Plug-in the values on the integral problem, we get:
int 1/(xsqrt(4x^2+9)) dx =int 1/((u/2)sqrt(u^2+9)) *(du)/2
                            =int 2/(usqrt(u^2+9)) *(du)/2
                           =int (du)/(usqrt(u^2+9))
Applying the aforementioned integral formula where a^2=9 and a=3 , we get:
int (du)/(usqrt(u^2+9)) =-1/3ln((3+sqrt(u^2+9))/u)+C
Plug-in u^2 =4x^2  and u =2x on  -1/3ln((3+sqrt(u^2+9))/u)+C , we get the indefinite integral as:
int 1/(xsqrt(4x^2+9)) dx=-1/3ln((3+sqrt(4x^2+9))/(2x))+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...