Wednesday, January 4, 2017

Single Variable Calculus, Chapter 7, 7.7, Section 7.7, Problem 20

Suppose that $\displaystyle \tan hx = \frac{12}{13}$, find the values of the other hyperbolic functions at $x$.

Solving for $x$

Using Hyperbolic Function


$
\begin{equation}
\begin{aligned}

\tan hx =& \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
\frac{12}{13} =& \frac{e^x - e^{-x}}{e^x + e^{-x}}
\\
\\
12 (e^x + e^{-x}) =& 13 (e^x - e^{-x})
\\
\\
12 e^x + 12e^{-x} =& 13e^x - 13e^{-x}
\\
\\
25 e^{-x} =& e^x
\\
\\
\frac{25}{e^x} =& e^x
\\
\\
25 =& e^{2x}
\\
\\
\ln 25 =& \ln e^{2x}
\\
\\
\ln (5)^2 =& 2x
\\
\\
2 \ln 5 =& 2x
\\
\\
\frac{\cancel{2} \ln 5}{\cancel{2}} =& \frac{\cancel{2}x}{\cancel{2}}
\\
\\
x =& \ln 5

\end{aligned}
\end{equation}
$



Solving for $\sin hx$


$
\begin{equation}
\begin{aligned}

\sin hx =& \frac{e^x - e^{-x}}{2}
\\
\\
\sin hx =& \frac{e^{\ln 5} - e^{- \ln 5}}{2}
\\
\\
\sin hx =& \frac{5 - 5^{-1}}{2}
\\
\\
\sin hx =& \frac{\displaystyle 5 - \frac{1}{5}}{2}
\\
\\
\sin hx =& \frac{25 - 1}{2 (5)}
\\
\\
\sin hx =& \frac{24}{10}
\\
\\
\sin hx =& \frac{12}{5}

\end{aligned}
\end{equation}
$


Solving for $\cos h x$


$
\begin{equation}
\begin{aligned}

\cos hx =& \frac{e^x + e^{-x}}{2}
\\
\\
\cos hx =& \frac{e^{\ln 5} + e^{- \ln 5}}{2}
\\
\\
\cos hx =& \frac{5 + 5^{-1}}{2}
\\
\\
\cos hx =& \frac{\displaystyle 5 + \frac{1}{5}}{2}
\\
\\
\cos hx =& \frac{25 + 1}{2 (5)}
\\
\\
\cos hx =& \frac{26}{10}
\\
\\
\cos hx =& \frac{13}{5}

\end{aligned}
\end{equation}
$


Solving for $\sec hx$


$
\begin{equation}
\begin{aligned}

\sec hx =& \frac{1}{\cos hx} = \frac{2}{e^x + e^{-x}}
\\
\\
\sec hx =& \frac{2}{e^{\ln 5} + e^{- \ln 5}}
\\
\\
\sec hx =& \frac{2}{5 + 5^{-1}}
\\
\\
\sec hx =& \frac{2}{\displaystyle 5 + \frac{1}{5}}
\\
\\
\sec hx =& \frac{2}{\displaystyle \frac{25 + 1}{5}}
\\
\\
\sec hx =& \frac{2(5)}{26}
\\
\\
\sec hx =& \frac{10}{26}
\\
\\
\sec hx =& \frac{5}{13}

\end{aligned}
\end{equation}
$


Solving for $\csc hx$


$
\begin{equation}
\begin{aligned}

\csc hx =& \frac{1}{\sin hx} = \frac{2}{e^x - e^{-x}}
\\
\\
\csc hx =& \frac{2}{e^{\ln 5} - e^{- \ln 5}}
\\
\\
\csc hx =& \frac{2}{5 - 5^{-1}}
\\
\\
\csc hx =& \frac{2}{\displaystyle 5 - \frac{1}{5}}
\\
\\
\csc hx =& \frac{2}{\displaystyle \frac{25 - 1}{5}}
\\
\\
\csc hx =& \frac{2 (5)}{24}
\\
\\
\csc hx =& \frac{10}{24}
\\
\\
\csc hx =& \frac{5}{12}

\end{aligned}
\end{equation}
$


Solving for $\cot hx$


$
\begin{equation}
\begin{aligned}

\cot hx =& \frac{\cos hx}{\sin hx} = \frac{e^x + e^{-x}}{e^x - e^{-x}}
\\
\\
\cot hx =& \frac{e^{\ln 5} + e^{- \ln 5}}{e^{\ln 5} - e^{- \ln 5}}
\\
\\
\cot hx =& \frac{5 + 5^{-1}}{5 - 5^{-1}}
\\
\\
\cot hx =& \frac{\displaystyle 5 + \frac{1}{5}}{\displaystyle 5 - \frac{1}{5}}
\\
\\
\cot hx =& \frac{\displaystyle \frac{25 + 1}{\cancel{5}}}{\displaystyle \frac
{25 - 1}{\cancel{5}}}
\\
\\
\cot hx =& \frac{26}{24}
\\
\\
\cot hx =& \frac{13}{12}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...