Saturday, January 7, 2017

College Algebra, Chapter 2, 2.1, Section 2.1, Problem 48

Prove that the points $A(-1,3), B(3,11)$ and $C(5,15)$ are collinear by showing that $d(A,B) + d(B,C) = d(A,C)$
By using distance formula,

$
\begin{equation}
\begin{aligned}
d_{(A,B)} &= \sqrt{(11-3)^2 + (3-(-1))^2}\\
\\
&= \sqrt{8^2 + 4^2}\\
\\
&= \sqrt{64+16}\\
\\
&= \sqrt{80} \text{ units }
\end{aligned}
\end{equation}
$


Then,

$
\begin{equation}
\begin{aligned}
d_{(B,C)} &= \sqrt{(15-11)^2 + (5-3)^2}\\
\\
&= \sqrt{4^2 + 2^2}\\
\\
&= \sqrt{16+4}\\
\\
&= \sqrt{20} \text{ units}
\end{aligned}
\end{equation}
$

Lastly,

$
\begin{equation}
\begin{aligned}
d_{(A,C)} &= \sqrt{(15-3)^2 + (5-(-1))^2}\\
\\
&= \sqrt{12^2 + 6^2}\\
\\
&= \sqrt{144+36}\\
\\
&= \sqrt{180} \text{ units}
\end{aligned}
\end{equation}
$

Therefore,

$
\begin{equation}
\begin{aligned}
d(A,B) + d(B,C) = d(A,C) \\
\\
\sqrt{80} + \sqrt{20} &= \sqrt{180} && \text{Factor out the largest squares}\\
\\
\sqrt{(16)(5)} + \sqrt{(4)(5)} &= \sqrt{(36)(5)} && \text{Simplify}\\
\\
4\sqrt{5} + 2\sqrt{5} &= 6 \sqrt{5} && \text{Combine like terms}\\
\\
6 \sqrt{5} &= 6 \sqrt{5}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...