Sunday, January 29, 2017

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 4

Determine the integral $\displaystyle \int^{\frac{\pi}{2}}_0 \cos^5 x dx$


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_0 \cos^5 x dx =& \int^{\frac{\pi}{2}}_0 \cos^4 x \cos x dx
\qquad \text{Apply Trigonometric Identity } \cos^2x = 1 - \sin^2 x
\\
\\
\int^{\frac{\pi}{2}}_0 \cos^5 x dx =& \int^{\frac{\pi}{2}}_0 (1 - sin^2 x)^2 \cos x dx
\\
\\
\int^{\frac{\pi}{2}}_0 \cos^5 x dx =& \int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx

\end{aligned}
\end{equation}
$


Let $u = \sin x$, then $du = \cos x dx$, when $x = 0, u = 0$ and when $\displaystyle x = \frac{\pi}{2}, u = 1$. Therefore,


$
\begin{equation}
\begin{aligned}

\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& \int^1_0 (1 - 2u^2 + u^4) du
\\
\\
\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& u - 2 \cdot \frac{u^{2 + 1}}{2 + 1} + \left. \frac{u^{4 + 1}}{4 + 1} \right|^1_0
\\
\\
\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& u - \frac{2u^3}{3} + \frac{u^5}{5} \left. \right|^1_0
\\
\\
\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& 1 - \frac{2(1)^3}{3} + \frac{(1)^5}{5} - 0 + \frac{2(0)^3}{3} - \frac{(0)^5}{5}
\\
\\
\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& \frac{15 - 10 + 3}{15}
\\
\\
\int^{\frac{\pi}{2}}_0 (1 - 2 \sin^2 x + \sin^4 x) \cos x dx =& \frac{8}{15}


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...