Thursday, August 23, 2018

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 35

int_1^2x^4(ln(x))^2dx
If f(x) and g(x) are differentiable functions, then
intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx
If we write f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Using the above method of integration by parts,
intx^4(ln(x))^2dx=(ln(x))^2intx^4dx-int(d/dx(ln(x)^2)intx^4dx)dx
=(ln(x))^2*x^5/5-int(2ln(x)*1/x(x^5/5))dx
=(ln(x))^2x^5/5-2/5intx^4ln(x)dx
again applying integration by parts,
=x^5/5(ln(x))^2-2/5(ln(x)intx^4dx-int(d/dx(ln(x))intx^4dx)dx)
=x^5/5(ln(x))^2-2/5(ln(x)x^5/5-int(1/x*x^5/5)dx)
=x^5/5(ln(x))^2-2/25x^5ln(x)+2/25intx^4dx
=x^5/5(ln(x))^2-2/25x^5ln(x)+2/25*x^5/5
adding constant to the solution,
=x^5/5(ln(x))^2-2/25x^5ln(x)+2/125x^5+C
Now evaluate the definite integral,
int_1^2x^4(ln(x))^2dx=[x^5/5(ln(x))^2-2/25x^5ln(x)+2/125x^5]_1^2
=[2^5/5(ln(2))^2-2/25*2^5ln(2)+2/125(2^5)]-[1^5/5(ln(1))^2-2/25(1)^5ln(1)+2/125(1^5)]
=[32/5(ln(2))^2-64/25ln(2)+64/125]-[2/125]
=32/5(ln(2))^2-64/25ln(2)+62/125

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...