Monday, August 27, 2018

Calculus: Early Transcendentals, Chapter 7, Chapter Review, Section Review, Problem 22

Let us first rewrite the integral a bit.
int te^sqrt t dt=int(sqrt t ^3 e^sqrt t)/(sqrt t)dt=
Now we use substitution x=sqrt t,\ dx=dt/(2sqrt t)
2int x^3e^x dx=
Now we use partial integration |[u=x^3,dv=e^xdx],[du=3x^2dx,v=e^x]|
2(x^3e^x-3int x^2e^x dx)=
Again we use partial integration |[u=x^2,dv=e^xdx],[du=2xdx,v=e^x]|
2x^3e^x-6(x^2e^x-2int xe^xdx)=
Partial integration once more |[u=x,dv=e^xdx],[du=dx,v=e^x]|
2x^3e^x-6x^2e^x+12(xe^x-int e^xdx)=
2x^3e^x-6x^2e^x+12xe^x-12e^x+C=
Now we return the substitution.
2sqrt t ^3e^sqrt t-6te^sqrt t+12sqrt t e^sqrt t-12e^sqrt t+C=
e^sqrt t(2sqrt t^3-6t+12sqrt t-12)+C

No comments:

Post a Comment

Summarize the major research findings of "Toward an experimental ecology of human development."

Based on findings of prior research, the author, Bronfenbrenner proposes that methods for natural observation research have been applied in ...